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Questions to start from...

Why Communities?
How to find members of communities today?

Practical relevance, Applications?

All finished or are improvements possible? (How

to find members of a community tomorrow...)



Different communities in different networks:
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Different communities in different networks:

Protein-Protein interaction (binding) j(*

in yeast (effect of removal of protein . 5 .
deadly (red), harmless (green),
unknown (yellow)

“Biological network”



Different communities in different networks:
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Communities in networks:

Fact: Many real-world networks display a community
structure, e.g. families, groups of close friends in social
networks, individual pathways in metabolic networks ...

Question: Can we detect the presence of communities in

a network and find members of possible communities?



How to find Members of a Community?

The problem of a distance measure for networks...
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What is a community?

Intuitively: C. is a subgraph V of a graph G with the
Internal connections denser than the external ones.

Community in a strong sense:

k"(VYy>k™(V),0i0V

Community in a weak sense:

; kiin (V) > ; kiout (V)
Modularity:
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Graph-Partioning Heuristics (minimizing the edges
to cut. when splitting a graph):

Kernighan-Lin (for balanced partitions):

For nodes u,v:
diff(v):= # of links to nodes out of community - # of links to nodes in community

gain(u,v):=diff(v) + diff(u) — 2 (# of links between u and v)

bi-partition graph (randomly)
repeat
find vertex pair with largest gain
exchange it
until total number of external edges does not decrease anymore




Why it’s not optimal:
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Links are not all equal!



The Girvan-Newman Algorithm:

Based on edge betweenness (how many
shortest paths between vertices run along a
particular edge)

Recursive bi-partioning
Results in hierarchical clustering

repeat
Calculate edge betweenness of all edges
Remove edge with highest betweenness
until all edges removed
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The Zachary Karate Club:




Published Applications whicn 1kowon:

Subnetworks in biochemical pathways
Co-citation networks of genes
Collaboration of Jazz musicians
Subgroups in communication networks
Putative function of proteins



Disadvantages of the GN-algorithm:
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. and its network...

... 10x10 grid with periodic boundary conditions ...

Community detection is not graph partitioning!



Furthermore:

Algorithm is deterministic — but how
robust is the result?

Bi-partioning is conceptually
guestionable.

Does not allow for overlapping or “fuzzy”
communities — a node may not belong to
more than one community at the same
time.



Detecting Community Structure with a g-state
Potts model:

Put Potts spins 1 to g onto the nodes. Then use:

45 _

H(10,1)=-J 0 (0,,0,) +y ”égs_l)
(i, )HE s=1 2
Homogeneity Diversity

Find spin configuration for which the energy is minimal. Read off communities as
sets of nodes with equal spin.



Cooling down the new Hamiltonian — finding the
ground state with simulated annealing:
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How to set ?

Assuming no knowledge of the network topology, at which does
the energy of a homogeneous configuration equal that of

completely inhomogeneous system?
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Does it work?
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» Computer-generated networks with known community structure (4x32 nodes)
and known Q.. =Z, /16-1/4.

* Z,lintra-community links, z .:inter-community links.

max

« L. +Z, =Cconst.=16, e.g. p=const=0.126, but link density within the communities
is different!



Another example: College Football

115 Teams
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Communities obtained with the Potts-Model
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stable is it?

The conference structure is regained. but how

¢ Central Florida
& Notre Dame

Utah State

_*_
Team

1.5

O Duke

+ Kent
<1 UCLA

x Louisville ©
Team

A Kansas

1.5
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Measure how often any two teams end up in the same community when starting
from different initial conditions or measure at temperature slightly above

“freezing”, e.g. acceptance ratio of 10% or so.



Summary:

Short introduction to the problem of
community detection in complex
networks

Community detection is not graph
partioning!

Presentation of a new algorithm for the
detection of “fuzzy” communities that
allows for assessment of the stability of
the communities.
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Diffusion Approach:

Consider a large number of random walkers on the network:

p,(t +Ar) = p4T;p; (1)
J

; Is the expectation value of the number of random walkers on node i.

Tij is the transfer matrix.
The elements of 7ij are l/Kj for connected nodes and zero otherwise.

The relaxation of any initial distribution .(0) towards the steady state .(«) is
governed by the spectral properties of Tij.



How does it look like?
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1. Nodes of different type: Assortative Mixing

Let’'s assume the network consists of nodes of different type — are
nodes preferably connected to nodes of their own type, e.g. are the
communities representations of the type of the nodes?

Defining the assortativity coefficient r:

women
black hispanic white other a;
black | 0.258 0.016 0.035 0.013 { 0.323
g | hispanic | 0.012  0.157  0.058 0.019 | 0.247
g white | 0.013 0.023 0.306 0.035 | 0.377
other | 0.005 0.007 0.024 0.016 | 0.053
b; | 0.280  0.204  0.423 0.084

Z Ci ™ Z a;b;
erl—Z;m

dissortive r < 0 < r assortative



But what to do. if we know nothing about the types

of nodes?!

Well — ask for assortative mixing by degree! Do highly connected
nodes primarily connect to other highly connected nodes?

network type size n | assortativity r
physics coauthorship undirected 52 909 0.363
biology coauthorship undirected | 1520251 0.127
% mathematics coauthorship | undirected 253 339 0.120
S | film actor collaborations undirected | 449913 0.208
company directors undirected 7673 0.276
email address books directed 16 881 0.092
< | Internet undirected 10697 —0.189
£ | World-Wide Web directed | 269504 —0.067
& | software dependencies directed 3162 —0.016
_, | protein interactions undirected 2115 —0.156
‘§ metabolic network undirected 765 —0.240
éo neural network directed 307 —0.226
§ marine food web directed 134 —0.263
freshwater food web directed 92 —0.326

Assortative

Dissortive



How does assortive mixing by degree look like?

(a)
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assortative

(b)

dissortive



2. What else can we expect?

So if there exist communities of highly
interconnected nodes (high clustering coeft. ¢
which are interconnected by high degree nodes
(dissortive mixing by degree), then we can
expect a dependence of con k.

Indeed, some networks show:
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Some examples:
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