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Non coding RNAs everywhere. . .

Non coding RNAs (“RNA genes”) are transcripts that exert their function
as RNA whithout being translated to protein.

• Well known examples directly or indirectly involved in protein gene
expression:
– Protein expression: transfer RNA, ribosomal RNA
– Pre-mRNA splicing: spliceosomal RNAs (U1,U2,U4,U5,U6,. . . )
– (r)RNA modification: small nucleolar RNAs
– tRNA maturation: Ribonuclease P
– Protein export: Signal recognition particle RNA

• Most prominent new class of non-coding RNAs: microRNAs

• Many other examples are currently emerging.
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. . . and even more

• In complex organisms like human 97-98% of transcripts are ncRNAs.

• In few cases single ncRNAs have been described with interesting
implications for physiology and phathology
– roX1/2 Xist/Tsix are involved in X chromosome dosage

compensation in mammals and drosphila, resp.
– Y-chromosome specific TTY2 family is expressed in testis and

kidney
– Bic is strongly upregulated in certain B-cell lymphomas
– SCA is involved in the neurodegenerative disorder

spinocerebellar ataxia type 8
– DISC2 is implicated in the molecular etiology of schizophrenia
– Mutations in RMRP cause the development disorder

cartilage-hair hypoplasia (CHH)
– One of the known loci associated with autism encodes a ncRNA.
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Computational identification of ncRNAs

• Based on a priori knowledge: find members of known families
– Sequence similiarity alone: BLASTN
– Sequence and additional motif information: specialized programs

for e.g. tRNA or snoRNAs

• De novo prediction: find new genes and families
– Unlike protein coding genes (ORFs, codon bias,. . . ) ncRNAs lack

statistical signals in primary sequence
– Many known ncRNA have a characteristic secondary structure.

Is secondary structure prediction a reliable measure for th e
detection of ncRNAs?
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z-score statistics

Has a natural occuring RNA sequence a lower minimum free energy
(MFE) than random sequences of the same size and base composition?

1. Calculate native MFE m.

2. Calculate mean µ and standard deviation σ of MFEs of 100 shuffled
random sequences.

3. Express significance in standard deviations from the mean as z-score

z =

m − µ

σ

Negative z-scores indicate that the native RNA is more stable than the
random RNAs.
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MFE z-scores of known functional RNAs

ncRNA Type No. of Seqs. Mean z-score

tRNA 579 −1.84
5S rRNA 606 −1.62
Hammerhead ribozyme III 251 −3.08
Group II catalytic intron 116 −3.88
SRP RNA 73 −3.37
U5 spliceosomal RNA 199 −2.73

• Functional RNAs are clearly more stable than random sequences.

• Is this significant enough for genome wide screens?
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z-score distribution for 579 tRNAs
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• Only 2% below a z-score threshold of −4.

• Native sequences are not clearly separated from the random bulk.
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Well-definedness of RNA secondary structure

• At a given temperature RNA molecules form an ensemble of
structures which is described by the Boltzmann distribution.

• If this ensemble is dominated by the ground state (MFE structure) we
call the structure well-defined.

well-defined (mean distance = 3.27)
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A measure for well-definedness

• As measure for well-definedness we can use the mean distance
between structures in the ensemble.

• For the so-called “base-pair distance” metric the mean distance can
be calculated from the base-pair probability matrix as

〈D〉 =

∑

i<j

pij − p2

ij

Are functional RNAs better defined than random seqeunces?
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Well-definedness of functional RNAs

ncRNA Type Mean z MFE Mean z well-definedness

tRNA −1.84 −0.5
5S rRNA −1.62 −0.7
Hammerhead ribozyme III −3.08 −1.5
Group II catalytic intron −3.88 −1.2
U5 spliceosomal RNA −2.73 −1.1

• z-scores for mean-distances are less significant than z-scores based
on MFEs.

• Can a combination of both help?
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Well-definedness and MFE are not independent
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• Well-definedness and MFE are (to some degree) linear dependent.

• Well-definedness holds no additional information for our purpose.

Measures for single sequence predictions are not significan t enough for detecting
ncRNAs.
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Comparative genomics at our hands

• Prokaryotes: 15 enteric bacteria

• Yeast: 7 Sacharomyces species

• Nematode: C. elegans + C. briggsae (C. remanei, C. japonica and
CB5161 planned)

• Mammals: Mouse, rat, human

How can we make use of homologous sequences for ncRNA finding?

Bled 2004 – p.12/27



QRNA (Rivas & Eddy)

• For a given pairwise alignment decide if it is coding, structural RNA
or neither.

• There is one probabilistic model for each case which evaluates the
mutation pattern. The RNA model implements a probabilistic folding
algorithm.

• QRNA can be useful to some degree but has several disadvantages:
– The model parameters depend on many ad hoc assumptions and

extrapolations.
– Performance depends strongly on GC content and pairwise

identity.
– Sensitivity and selectivity is generally low for non-optimal data

sets.
– QRNA is relatively slow.
– The probabilistic folding model is not optimal (e.g. trained with

rRNAs and tRNAs and thus strongly biased).
– QRNA is limited to pairwise alignments.
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An alternative approach: RNAalifold

• RNAalifold performs MFE folding of a multiple sequence alignment

• It essentially uses the same algorithms and energy parameters as
RNAfold.

• Energy contributions of the single sequences are averaged.

• Covariance information is incorporated into the energy model:
– Consistent and compensatory mutations are rewarded.
– Non compatible base pairs are penalized.

• It calculates a (pseudo-)MFE consisting of an energy term and a
covariance term.

Can we use this MFE to assess an alignment for the existance of an
unusually stable and/or conserved secondary structure?
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How not to shuffle a MSA
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How not to shuffle a MSA

↓

Gap structure is important
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How not to shuffle a MSA II
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How not to shuffle a MSA II

↓

Local conservation pattern is important
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Conservative randomization of a MSA

• A correct randomization procedure shuffles only columns of the same
gap pattern and local conservation pattern.

• Considering this our algorithm produces alignments of the same
– length
– base composition
– overall conservation
– local conservation
– gap structure

• This is the most conservative procedure possible. It is effective
enough to remove correlations arising from secondary structures.
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z-scores of RNAalifold MFEs
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• We scored alignments with 2 to 4 sequences and mean pairwise
identities between 65% and 85%.
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z-score distribution for tRNA test sets
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• Additional information from aligned sequences shifts MFE predictions
towards significant levels.
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Distribution of 11633 random z-scores
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• z-scores of random alignments are well approximated by a standard
normal distribution (µ =0.01, σ =0.99) with a slight negative tail.
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Structural vs. sequence based alignments
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• 2083 pairwise alignments of SRP RNAs were scored.

• Above 60% there structural alignments and sequence based
alignments are essentially the same.

• Our method scores best between 60% and 70%.
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Genomic example: Saccharomyces sp.

z-score

ncRNA Type Gene Name No. of Seqs. ID (%) Single Alignment

SRP RNA SCR1 5 78.5 −2.2 −5.0

MRP RNA NME1 7 81.5 −4.6 −8.9

RNAse P RNA RPR1 7 72.3 −3.8 −6.7

U1 spliceosome RNA snR19 5 82.9 −3.2 −6.7

U4 spliceosome RNA snR14 7 88.0 −2.4 −4.2

U5 spliceosome RNA snR7-L 5 88.0 −3.6 −4.5

snR7-S 5 91.2 −3.3 −4.5

U6 spliceosome RNA snR6 7 92.8 −1.9 −0.3

H/ACA snoRNA snR9 5 88.5 −1.3 −3.2

snR10 7 83.4 −2.1 −3.8

C/D snoRNA snR4 5 77.3 −1.3 −1.6

snR39 7 83.2 −0.4 −0.2
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Genomic example: C.elegans/C.briggsae

z-score

ncRNA Type No. of Seqs. Identity (%) Length Single Alignment

SRP RNA 2 83.8 296 −5.5 −7.9

U1 spliceosome RNA 2 91.5 165 −4.6 −5.0

U2 spliceosome RNA 2 94.5 193 −5.0 −5.9

U4 spliceosome RNA 2 99.3 139 −0.7 +0.2

U5 spliceosome RNA 2 92.7 123 −2.3 −5.0

U6 spliceosome RNA 2 98.0 102 −0.8 −0.4

let-7 pre-miRNA 2 89.0 73 −7.5 −8.4

lin-4 pre-miRNA 2 90.0 70 −4.1 −4.8

SL2 RNA 2 91.3 103 −2.5 −3.6

Bled 2004 – p.23/27



How to fold a complete genome?

• Straightforward approach: local predictions using a sliding window

• A sliding window has two major drawbacks:
– Only for a step-size 1 all possible structures are considered.

Realistic step sizes leave a “blind-spot”.
– A fixed size window cannot predict all substructures of varying

length optimally

• A local prediction algorithm is desirable
– QRNA implements a local prediction algorithm.
– Also standard algorithms for MFE predictions can be modified to

smoothly scan a genome and predict all substructures smaller
than a given maximum size: RNAlfold

– In principle, this can be implemented also for RNAalifold
without modification.
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Is this feasible for complete genomes?

• Generally, RNAalifold is fast for moderate window sizes

• The Monte Carlo procedure to estimate statistical significance
imposes a serious performance problem.

• A meaningful ad hoc score seems impossible. It would have to
consider GC-content, degree of conservation, gap-pattern and length
of the alignment.

• In theory, a genome has to be folded 200 times (sample size 100,
forward and reverse strand)

• In practice, the number of calculations can be reduced drastically
– Only conserved (=alignable) regions have to be analyzed
– RNAalifold will not predict a consensus structure everywhere.
– We are only interested if a structure has a z-score below a certain

threshold, we are not interested in the exact z-score if it is above
the threshold. We can thus pre-estimate z-scores with lower
sample size.
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Summary

• The computational detection of non coding RNAs is a major goal of
bioinformatics.

• Secondary structure predictions are of limited statistical significance.

• The same is true for other measures for single sequences (e.g.
well-definedness)

• Comparative studies seem most promising but only few methods for
comparative sequence analysis exist (QRNA).

• We have proposed a new procedure (z-scores of RNAalifold MFEs)
to assess a multiple sequence alignment for the existence of a stable
and/or conserved fold.

• Our method shows good sensitivity/selectivity in a variety of test
cases, including real-life genomic examples.

• Our method is computationally demanding, but feasible if reduced to
the essential.
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What’s next?

1. Put all these ideas together into a (structural) RNA gene finder
(“RNAlalifoldz”) as quickly as possible.

2. Convince people that this is the way to go and that QRNA sucks.

3. Start doing some biology.
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