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Non coding RNAs everywhere. ..

Non coding RNAs (“RNA genes”) are transcripts that exert their function
as RNA whithout being translated to protein.

e Well known examples directly or indirectly involved in protein gene
expression:

— Protein expression: transfer RNA, ribosomal RNA

— Pre-mRNA splicing: spliceosomal RNAs (U1,U2,U4,U5,U6,...)
— (r)RNA modification: small nucleolar RNAs

— tRNA maturation: Ribonuclease P

— Protein export: Signal recognition particle RNA

e Most prominent new class of non-coding RNAs: microRNAS
e Many other examples are currently emerging.

Bled 2004 — p.2/27



...and even more

e In complex organisms like human 97-98% of transcripts are ncRNASs.

e In few cases single ncRNAs have been described with interesting
Implications for physiology and phathology

roX1/2 Xist/Tsix are involved in X chromosome dosage
compensation in mammals and drosphila, resp.

Y-chromosome specific TTY2 family is expressed in testis and
Kidney

Bic is strongly upregulated in certain B-cell lymphomas

SCA is involved in the neurodegenerative disorder
spinocerebellar ataxia type 8

DISC2 is implicated in the molecular etiology of schizophrenia
Mutations in RMRP cause the development disorder
cartilage-hair hypoplasia (CHH)

One of the known loci associated with autism encodes a ncRNA.
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Computational identification of ncRNAs

e Based on a priori knowledge: find members of known families
— Sequence similiarity alone: BLASTN
— Seqguence and additional motif information: specialized programs
for e.g. tRNA or snoRNAs
e De novo prediction: find new genes and families

— Unlike protein coding genes (ORFs, codon bias,...) ncRNAs lack
statistical signals in primary sequence

— Many known ncRNA have a characteristic secondary structure.

Is secondary structure prediction a reliable measure for th e
detection of ncRNASs?
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Z-Score statistics

Has a natural occuring RNA sequence a lower minimum free energy
(MFE) than random sequences of the same size and base composition?
1. Calculate native MFE m.

2. Calculate mean i and standard deviation ¢ of MFEs of 100 shuffled
random sequences.

3. EXxpress significance in standard deviations from the mean as z-score

Negative z-scores indicate that the native RNA is more stable than the
random RNAs.
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MFE z-scores of known functional RNASs

NCRNA Type No. of Seqs. Mean z-score
tRNA 579 —1.84
5S rRNA 606 —1.62
Hammerhead ribozyme Il 251 —3.08
Group Il catalytic intron 116 —3.88
SRP RNA 73 —3.37
U5 spliceosomal RNA 199 —2.73

e Functional RNAs are clearly more stable than random sequences.

e |[s this significant enough for genome wide screens?
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Z-score distribution for 579 tRNASs
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e Only 2% below a z-score threshold of —A4.

e Native sequences are not clearly separated from the random bulk.
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Well-definedness of RNA secondary structure

e At a given temperature RNA molecules form an ensemble of
structures which is described by the Boltzmann distribution.

e [f this ensemble is dominated by the ground state (MFE structure) we
call the structure well-defined.

well-defined (mean distance = 3.27) not well-defined (mean distance = 15.7)
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A measure for well-definedness

e As measure for well-definedness we can use the mean distance
between structures in the ensemble.

e [For the so-called “base-pair distance” metric the mean distance can
be calculated from the base-pair probability matrix as

(D) =" pij — i

1<J

Are functional RNAs better defined than random segeunces?

Bled 2004 — p.9/27



Well-definedness of functional RNAS

NcRNA Type Mean z MFE Mean z well-definedness
tRNA —1.84 —0.5
5S rRNA —1.62 —0.7
Hammerhead ribozyme lll —3.08 —-1.5
Group Il catalytic intron —3.88 —1.2
U5 spliceosomal RNA —2.73 —-1.1

e z-scores for mean-distances are less significant than z-scores based
on MFEs.

e Can a combination of both help?

Bled 2004 — p.10/27



Well-definedness and MFE are not independent
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z-scores of MFE

e Well-definedness and MFE are (to some degree) linear dependent.
e Well-definedness holds no additional information for our purpose.

Measures for single sequence predictions are not significan t enough for detecting
NCRNAS.
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Comparative genomics at our hands

e Prokaryotes: 15 enteric bacteria
e Yeast: 7 Sacharomyces species

e Nematode: C. elegans + C. briggsae (C. remanei, C. japonica and
CB5161 planned)

e Mammals: Mouse, rat, human

How can we make use of homologous sequences for ncRNA finding?

tot
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QRNA (Rivas & Eddy)

e [or a given pairwise alignment decide if it is coding, structural RNA
or neither.

e There is one probabilistic model for each case which evaluates the
mutation pattern. The RNA model implements a probabilistic folding
algorithm.

e (ORNA can be useful to some degree but has several disadvantages:

— The model parameters depend on many ad hoc assumptions and
extrapolations.

— Performance depends strongly on GC content and pairwise
identity.

— Sensitivity and selectivity is generally low for non-optimal data
sets.

— QRNA s relatively slow.

— The probabilistic folding model is not optimal (e.g. trained with
rRNAs and tRNAs and thus strongly biased).

— QRNA is limited to pairwise alignments.

tot
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An alternative approach: RNAalifold

e RNAal i f ol d performs MFE folding of a multiple sequence alignment

e |t essentially uses the same algorithms and energy parameters as
RNAf ol d.

e Energy contributions of the single sequences are averaged.

e Covariance information is incorporated into the energy model:
— Consistent and compensatory mutations are rewarded.
— Non compatible base pairs are penalized.

e [t calculates a (pseudo-)MFE consisting of an energy term and a
covariance term.

Can we use this MFE to assess an alignment for the existance of an
unusually stable and/or conserved secondary structure?

tot
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How not to shuffle a MSA

khkdkkk dkkkkkkkkkkk dkhkkhkhkkhk dhkhkhkkk *
Seql TAGGTGAGCTAGGCCC GATTCGTGCATCAGGGTCTAATCGGTTCGAG
Seq2 GCTAGGCCC ~GTGGTCTAACCGGTTCGAG
Seq3 GCTAGGCCC CCGGTCTAACCGGTTCGAG
Seq4 GCTAGGCCC CTAACCG
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How not to shuffle a MSA

dhkkkk kkkhkhkhkhkkkkkk khkkkkkk khkkkkk *
Seql TAGGTGAGCTAGGCCCTCTATGATTCGTGCATCAGGGTCTAATCG
Seq2 TAGGTGAGCTAGGCCCTC ~GTGGTCTAACCG
Seq3 TAGGTAAGCTAGGCCCTC CCGGTCTAACCG
Seq4 TAGGTGAGCTAGGCCCTCGGCTICAGTAGCGGCAGTIGGTCTAACCG

* kkhkhk * khkk kk kk khk kK *khk*k *k *% *k*k *hk*k *
Seql GGCTAAGGGCICCCTC GGGICC CGGGTTCGAG
Seq2 -GCT-AG-GC-CC-TCT--GTGGT-C C-CGG-TTCGAG
Seq3 ~GCT-AG-GC-CC-TCT--CCGGT-C C-CGG-TTCGAG
Seq4 CGCTAAGGGCTCCCTCGTGATGGTGC CTCGGC

Gap structure is important
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How not to shuffle a MSA I

khkkhkkhkk hhkhhhkhkhhhhkkkh khkhhkhkhhk hhkhhkhi *

Seql G GCTAGGCCCTCTTCGTGCATCAGGGTC CG
Seq2 TGCACTAG GCTAGGCCCTCTGC C GGTC CCG
Seq3 CTAG GCTAGGCCCTCAGC CCGGTC CCG
Seqd4 GGCICTAG GCTAGGCCCTC GCGGCAGTGGTC CCG
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How not to shuffle a MSA I

*hKKKE hhkhkkhkkkkhR *hhkhhh Kkkkhh &
Seql G GGCCCTCTTCGTGCATCAGGGTC CG CGAG
Seq2 TGCACTAG GGCCCTCTGC C GGTC CCG CGAG
Seq3 CTAG GGCCCTCAGC CCGGTC CCG CGAG
Seqd4 GGCICTAG GGCCCTC GCGGCAGTGGTC CCG C

*k kk * kk ok kk  kkk kk kkk ok kk kk  kkk kkkk ok

Seql GA GGC GCGCGCCC GGGCTCTC CGTCGAG

Seqg2 GCACGG GC GCGCGCCC GGCTC CCGTIC

Seqg3 CGG GC GTGCGCC CCGGCTC CCGTC

Seq4 GGTGCTCGG CGCGC GGGC.CC GlG C CcC

Local conservation pattern is important
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Conservative randomization of a MSA

e A correct randomization procedure shuffles only columns of the same
gap pattern and local conservation pattern.
e Considering this our algorithm produces alignments of the same
— length
— base composition
— overall conservation
— local conservation
— gap structure

e This is the most conservative procedure possible. It is effective
enough to remove correlations arising from secondary structures.

tot
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z-scores of RNAalifold MFEs
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Number of sequences in alignment

e We scored alignments with 2 to 4 sequences and mean pairwise
identities between 65% and 85%.
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z-score distribution for tRNA test sets
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e Additional information from aligned sequences shifts MFE predictions

towards significant levels.
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Distribution of 11633 random z-scores
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e z-scores of random alignments are well approximated by a standard
normal distribution (1 =0.01, ¢ =0.99) with a slight negative talil.
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Structural vs. sequence based alignments
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e 2083 pairwise alignments of SRP RNAs were scored.

e Above 60% there structural alignments and sequence based
alignments are essentially the same.

e Our method scores best between 60% and 70%.

tor
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Genomic example: Saccharomyces sp.

Z-score
NcRNA Type Gene Name No. of Segqs. ID (%) Single  Alignment
SRP RNA SCR1 5 78.5 —2.2 —5.0
MRP RNA NMEL1 7 81.5 —4.6 —8.9
RNAse P RNA RPR1 7 72.3 —3.8 —6.7
Ul spliceosome RNA  snR19 5 82.9 —3.2 —6.7
U4 spliceosome RNA  snR14 7 88.0 —2.4 —4.2
U5 spliceosome RNA  snR7-L 5 88.0 —3.6 —4.5
snR7-S ) 91.2 —-3.3 —4.5
U6 spliceosome RNA  snR6 7 92.8 —1.9 —0.3
H/ACA snoRNA SnR9 5 88.5 —1.3 —3.2
snR10 7 83.4 —2.1 —3.8
C/D snoRNA snR4 5 77.3 —-1.3 —1.6
snR39 7 83.2 —0.4 —0.2
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Genomic example: C.elegans/C.briggsae

z-score
NcRNA Type No. of Segs. Identity (%) Length Single Alignment
SRP RNA 2 83.8 296 —5.5 —7.9
U1l spliceosome RNA 2 91.5 165 —4.6 —5.0
U2 spliceosome RNA 2 94.5 193 —5.0 —5.9
U4 spliceosome RNA 2 99.3 139 —0.7 +0.2
U5 spliceosome RNA 2 92.7 123 —2.3 —5.0
U6 spliceosome RNA 2 98.0 102 —0.8 —04
let-7 pre-miRNA 2 89.0 73 —7.5 —8.4
lin-4 pre-miRNA 2 90.0 70 —4.1 —4.8
SL2 RNA 2 91.3 103 —2.5 —3.6
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How to fold a complete genome?

e Straightforward approach: local predictions using a sliding window

e A sliding window has two major drawbacks:

— Only for a step-size 1 all possible structures are considered.
Realistic step sizes leave a “blind-spot”.

— A fixed size window cannot predict all substructures of varying
length optimally

e A local prediction algorithm is desirable
— QRNA implements a local prediction algorithm.

— Also standard algorithms for MFE predictions can be modified to
smoothly scan a genome and predict all substructures smaller
than a given maximum size: RNAI f ol d

— In principle, this can be implemented also for RNAal i f ol d
without modification.
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Is this feasible for complete genomes?

e Generally, RNAal i f ol d is fast for moderate window sizes
e The Monte Carlo procedure to estimate statistical significance

Imposes a serious performance problem.

e A meaningful ad hoc score seems impossible. It would have to

consider GC-content, degree of conservation, gap-pattern and length
of the alignment.

¢ Intheory, a genome has to be folded 200 times (sample size 100,

forward and reverse strand)

e |n practice, the number of calculations can be reduced drastically

— Only conserved (=alignable) regions have to be analyzed
— RNAal i f ol d will not predict a consensus structure everywhere.

— We are only interested if a structure has a z-score below a certain
threshold, we are not interested in the exact z-score if it is above
the threshold. We can thus pre-estimate z-scores with lower
sample size.
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Summary

The computational detection of non coding RNAs is a major goal of
bioinformatics.

Secondary structure predictions are of limited statistical significance.

The same is true for other measures for single sequences (e.qg.
well-definedness)

Comparative studies seem most promising but only few methods for
comparative sequence analysis exist (QRNA).

We have proposed a new procedure (z-scores of RNAalifold MFES)
to assess a multiple sequence alignment for the existence of a stable
and/or conserved fold.

Our method shows good sensitivity/selectivity in a variety of test
cases, including real-life genomic examples.

Our method is computationally demanding, but feasible if reduced to
the essential.

Bled 2004 — p.26/27



What's next?

. Put all these ideas together into a (structural) RNA gene finder

(“RNAI al i f ol dz”) as quickly as possible.

. Convince people that this is the way to go and that QRNA sucks.
3. Start doing some biology.
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