Spicy Barbeques

Axel Mosig Joint work with Sonja Prohaska

UNIVERSITÄT LEIPZIG

Overview

Ι.

Discovering cis-regulatory modules using bbq and other footprinting tools

11.

Weighted Barbeques and other Variants

|||.

Fair Barbeques and Complexity

Discovering CRMs

- Genes are regulated by transcription factor binding sites
- Binding sites responsible for a single gene occur clustered, but may be shuffled (Ludwig et al. 2000):

(Arnone and Davidson)

- We often have candidates for binding sites
- Find binding sites that occur as clusters

The bbq approach

Given:

- *n* candidate binding sites (nucleotide sequences)
 *s*₁,...,*s*_n
 E.g.: *s*₁ =Meis, *s*₂ =Pbx-Hox1-5, ...
- Genomes T_1, \ldots, T_K E.g.: $T_1 = Mma, T_2 = Hsa, \ldots$)
- Cluster Length L (e.g. L = 200)
- Question: What is the largest possible selection S of binding sites such that all binding sites in S occur within an interval of length L on each T_i ?

The bbg approach

The bbq approach

 In terms of stabbing features: We want to serve as many common features as possible to all our guests

Weighting schemes

- Straightforward problem setting: Stab maximum number of features
- Refined problem:
 - Assign a weight to each binding site occurence
 - Maximize the sum of all weights rather than the number of BSs
- what are reasonable weights?

p-value based weighting

- Given genome sequence T
- for each pair $\alpha, \beta \in \{A, C, G, T\}$ determine:
 - how often does $\alpha\beta$ occur as a subsequence of T?
- \rightsquigarrow dinucleotide-based Markov Model M
- for each candidate binding site s, obtain probability:
 - $p_M(s) :=$ probability of s being produced by M

p-value based weighting

- We want to have weights rather than probabilities...
- $w(s) := -\log p_M(s)$
- implemented in bbq
- allow certain number of mismatches in the Markov Model

Other weighting schemes

- Other possibilities for reasonable weights:
 - based on $f_{s,T} :=$ number of occurences of s in T
 - when using Transfac: use postion-weight-matrices rather than a fixed string s
 "occurences" of a PWM yield a weight as well
- not (yet?) implemented

Further options supported by bbq

- weighted and unweighted optimization
- grouping: treat several binding sites as one group;
 maximize number of groups instead of number of BSs
- Maximize (weighted) multiset intersections instead of set intersections
- Compute suboptimal solutions:
 - best h solutions or
 - all solutions exceeding threshold weight θ
- 3 different algorithms

Is the best barbeque fair?

Consider the following optimal solution for a barbeque instance:

{ Beef, Onion, Mushroom,

CPeter = Green Pepper, Pork, Liver, Cucumber, Salmon}

 $C_{\text{Sonja}} = \{\text{Beef, Onion, Mushroom}\}$

 $C_{\text{Konstantin}} = \{\text{Beef, Onion, Mushroom, Salmon}\}$

- B := CPeter $\cap C$ Sonja $\cap C$ Konstantin; |B| = 3
- …is this fair!?

Is the best barbeque fair?

• In terms of binding sites:

- too many "irrelevant" binding sites in a cluster might disturb function
- if we allow no "irrelevant" binding sites, we miss significant clusters!
- \rightsquigarrow introduce parameter δ and find best barbeque B satisfying

 $|C_i \setminus B| \le \delta$

for all *i*.

- $\delta = 2$ reasonable choice
- δ small \rightsquigarrow computational advantage!

How hard is barbeque optimization?

- Decision version of best barbeque problem is NP-complete
- \rightsquigarrow no polynomial-time algorithm unless P = NP
 - 3 algorithmic variations:
 - Exponential in K (num. of gen. seq.)
 - Exponential in m (num. of cand. binding sites)
 - Exponential in δ
- δ is a "hidden" parameter that is usually small!

How hard is barbeque optimization?

- NP-complete in general
- "well-behaved" parameters (e.g., δ)
- → parameterized complexity
- Can we find good approximations?
- → solution computed is (provaby!) only a constant factor worse than optimal solution
- w structural complexity (MAX-SNP-hardness, ... ?)
 - possibly interesting for some future work

THX1E6