Why Relations are Topologies

Bärbel M. R. Stadler

Max Planck Institute for Mathematics in the Sciences

Bled, 22.02.05

Genotype Spaces

Given:

- a set X of possible genotypes
- a set A of realized genotypes
- a fixed collection of genetic operators

[such as mutation, recombination, gene-rearrangement]

define the set A' of genotypes accessible from A.

Properties

- (i) No spontaneous creation, i.e, $\emptyset' = \emptyset$.
- (ii) A more diverse population produces more diverse offsprings: $A \subseteq B$ implies $A' \subseteq B'$
- (iii) All parental genotypes are also accessible in the next time step $A\subseteq A'.$

In the case of mutation as the only source of diversity:

haploid populations, no sex, no recombination, etc

(iv) Diversity of offsprings depends only on the parent:
$$A' = \bigcup_{x \in A} \{x\}'$$

Set-Valued Set-Functions

Let X be a set, $\mathcal{P}(X)$ its power set (i.e., theset of all subsets of X) Let cl : $\mathcal{P}(X) \to \mathcal{P}(X)$ be an arbitrary function. We call cl(A) the *closure* of the set A. The dual of the closure function is the *interior function* int : $\mathcal{P}(X) \to \mathcal{P}(X)$ defined by

$$\operatorname{int}(A) = X \setminus \operatorname{cl}(X \setminus A)$$

Given the interior function, we can recover the closure:

$$cl(A) = X \setminus (int(X \setminus A))$$

Neighborhoods

Let cl and int be a closure function and its dual interior function on X. Then the *neighborhood function* $\mathcal{N} : X \to \mathcal{P}(\mathcal{P}(X))$

$$\mathcal{N}(x) = \left\{ N \in \mathcal{P}(X) \middle| x \in \operatorname{int}(N) \right\}$$

of its *neighborhoods*. Closure and neighborhood are equivalent:

 $x \in \mathsf{cl}(A) \Longleftrightarrow (X \setminus A) \notin \mathcal{N}(x) \quad ext{and} \quad x \in \mathsf{int}(A) \Longleftrightarrow A \in \mathcal{N}(x)$

Axioms for Generalized Closure Spaces

	closure	interior	neighborhood
K0'	$\exists A: x \notin cl(A)$	$\exists A: x \in int(A)$	$\mathcal{N}(x) \neq \emptyset$
K0	$cl(\emptyset) = \emptyset$	int(X) = X	$X \in \mathcal{N}(x)$
K1	$A \subseteq B \implies \operatorname{cl}(A) \subseteq \operatorname{cl}(B)$	$A \subseteq B \implies \operatorname{int}(A) \subseteq \operatorname{int}(B)$	$N \in \mathcal{N}(x)$ and $N \subseteq N'$
isotonic,	$cl(A \cap B) \subseteq cl(A) \cap cl(B)$	$int(A) \cup int(B) \subseteq int(A \cup B)$	\rightarrow
monotone	$cl(A) \cup cl(B) \subseteq cl(A \cup B)$	$int(A \cap B) \subseteq int(A) \cap int(B)$	$N' \in \mathcal{N}(x)$
KA	cl(X) = X	$int(\emptyset) = \emptyset$	$\emptyset \notin \mathcal{N}(x)$
KB	$A \cup B = X \implies$	$A \cap B = \emptyset \implies$	$N', N'' \in \mathcal{N}(x) \implies$
	$cl(A) \cup cl(B) = X$	$int(A) \cap int(B) = \emptyset$	$N' \cap N'' \neq \emptyset$
K2	$A \subseteq cl(A)$	$int(A) \subseteq int(A)$	$N \in \mathcal{N}(x) \implies x \in N$
expansive			
K3	$cl(A \cup B) \subseteq cl(A) \cup cl(B)$	$int(A) \cap int(B) \subseteq int(A \cup B)$	$N', N'' \in \mathcal{N}(x) \Longrightarrow$
sub-linear			$N' \cap N'' \in \mathcal{N}(x)$
K4	cl(cl(A)) = cl(A)	int(int(A)) = int(A)	$N \in \mathcal{N}(x) \iff$
idempotent			$int(N) \in \mathcal{N}(x)$
K5			$\mathcal{N}(x) = \emptyset$ or $\exists N(x)$:
additive	$\bigcup_{i \in I} cl(A_i) = cl\left(\bigcup_{i \in I} A_i\right)$	$\bigcap_{i \in I} \operatorname{int}(A_i) = \operatorname{int}\left(\bigcap_{i \in I} A_i\right)$	$N \in \mathcal{N}(x)$
			$\iff N(x) \subseteq N$

Isotonic Spaces

(K1) $A \subseteq B$ implies $cl(A) \subseteq cl(B)$ for all $A, B \in \mathcal{P}(X)$. (K1') $cl(A) \cup cl(B) \subseteq cl(A \cup B)$ for all $A, B \in \mathcal{P}(X)$. (K1") $cl(A \cap B) \subseteq cl(A) \cap cl(B)$

A (not necessarily non-empty) collection $\mathcal{F} \subseteq \mathcal{P}(X)$ is a *stack* if $F \in \mathcal{F}$ and $F \subseteq G$ implies $G \in \mathcal{F}$. The closure function cl is isotonic if and only if $\mathcal{N}(x)$ is a stack for all $x \in X$. Isotony (K1) is necessary and sufficient to express the closure in terms of neighborhoods *in the usual way*:

$$c(A) = \{x \in X | \forall N \in \mathcal{N}(x) : A \cap N \neq \emptyset\}$$

Binary Relations

Let \mathfrak{R} be a binary relation on a (not necessarily finite) set X, i.e., $\mathfrak{R} \subseteq X \times X$. We write $x\mathfrak{R}y$ or $(x, y) \in \mathfrak{R}$ to mean that x "is in relation \mathfrak{R} to y". We define:

$$\Re x = \{z \in X | z \Re x\}$$

 $x \Re = \{z \in X | x \Re z\}$

Furthermore, we define:

dom
$$[\mathfrak{R}] = \{x \in X | \exists z \in X : x \mathfrak{R}z\}$$

img $[\mathfrak{R}] = \{y \in X | \exists z \in X : z \mathfrak{R}y\}$

Then dom $[\mathfrak{R}] = \bigcup_x \mathfrak{R}x$ and img $[\mathfrak{R}] = \bigcup_x x\mathfrak{R}$.

Topology of a Binary Relation

Let \mathfrak{R} be a relation of X and consider a subset $A \subseteq X$. A natural way of defining the interior of A is to consider all points $x \in X$ that are *isolated* from the complement of A in the sense that there is no point $y \in X \setminus A$ for which $y\mathfrak{R}x$. We have:

$$int(A) = \{x \in X \mid \not\exists y \in X \setminus A : y \Re x\}$$

Equivalently, $x \in X \setminus int(X \setminus A)$ if $\exists y \in A : y \Re x$, i.e.,

$$cl(A) = \bigcup_{y \in A} \{x | y \Re x\} = \bigcup_{x \in A} x \Re$$

It follows immediately that cl is additive and satisfies (K0).

Binary Relation from Totally Additive Closures

Conversely, consider an additive closure function c satisfying (K0). Then there is a unique relation \Re_c defined by

$$x\mathfrak{R}_{c}y \iff y \in c(\{x\}).$$

Now construct the closure function $cl_{\mathfrak{R}_c}$ associated with relation \mathfrak{R}_c . We see: $c(\{x\}) = cl_{\mathfrak{R}_c}(\{x\})$ for all $x \in X$. Additivity of c now implies $c(A) = cl_{\mathfrak{R}_c}(A)$ for all $A \in \mathcal{P}(X)$. Hence additive closure spaces satisfying (K0) are equivalent to binary relations.

Vicinities

The most important property of totally additive (K0) spaces is that there is a smallest neighborhood (*vicinity*) for each point:

$$\operatorname{vc}(x) = \bigcap \left\{ N \middle| N \in \mathcal{N}(x) \right\} \in \mathcal{N}(x)$$

We have $cl(x) = x\mathfrak{R}$ and $vc(x) = \mathfrak{R}x$, i.e., the vicinity is the closure of the transposed relation \mathfrak{R}^+ . Thus: $x \in cl(y) \iff y \in vc(x)$ (R0) cl is symmetric if $x \in vc(y) \iff y \in vc(x)$. Result: cl is symmetric \mathfrak{R} is symmetric.

Separation Axioms

► (T0) $\forall x, y \exists N' \in \mathcal{N}(x)$ or $N'' \in (y)$ such that $y \notin N'$ or $x \notin N''$

(K0+K5) spaces: $x \neq y \implies x \notin vc(y)$ or $y \notin vc(x)$, i.e., $y \notin cl(x)$ or $x \notin cl(y)$.

Equivalently: If $x \neq y$ then $x \Re y$ implies $y \Re x$.

Thus (T0) is equivalent to antisymmetry of the relation.

 (T1) ∀x, y∃N ∈ N(x) such that y ∉ N (K0+K5) spaces: x ≠ y ⇒ x ∉ vc(y) x ∉ cl(y) ⇔ cl(x) ⊆ {x}, i.e., there are no "off-diagonal elements" in ℜ.

<u>Lemma</u> For isotonic spaces holds (R0) and (T0) \iff (T1)

Separation Axioms

- ► (T2) $\forall x \neq y \exists N' \in \mathcal{N}(x)$ and $N'' \in \mathcal{N}(y)$ such that $N' \cap N'' = 0$ (K0+K5) spaces: $vc(x) \cap vc(y) = 0$, i.e., $z \in vc(x) \implies z \notin vc(y)$, i.e., $x \in cl(z) \implies y \notin cl(z)$, i.e., $|cl(z)| \leq 1$.
- A (K0+K5+T2) space corresponds to a function on X:

 $\psi : \operatorname{dom} \mathfrak{R} \to \operatorname{img} \mathfrak{R} : x \mapsto \psi(x) \quad \text{where} \quad \mathsf{cl}(x) = \{\psi(x)\}$

Transitive Relations and Topologies

- ▶ <u>Def.</u> ℜ is reflexive if xℜx for all x ∈ X. This is equivalent to A ∈ cl(A) (enlarging, K2)
- <u>Def.</u> \Re is transitive if $x\Re y$ and $y\Re z$ implies $x\Re z$ $x \in cl(y)$ and $y \in cl(z)$ implies $x \in cl(z)$. This is equivalent to $cl(cl(A)) \subseteq cl(A)$.
- ▶ Pre-Order relation = reflexive and transitive. This implies: $A \in cl(A)$ and $cl(cl(A)) \subseteq cl(A)$, i.e., cl(cl(A)) = cl(A) (idempotent closure).
- ▶ <u>Thm.</u> (K0,K5)-space is topological if and only if the corresponding relation ℜ is a pre-order.
- In particular, finite topologies and finite pre-order relations are the same thing.

So Long, and Thanks for all the fish!