20th TBI Winterseminar, Bled 2005 Slovenia "Computational Mathematics and Theoretical Biology"

c Q o

Homology based approaches to detect noncoding RNAs in the genomic sequence of Ciona intestinalis

Dominic Rose Undergraduate seminar, winter term 2004/05

Supervision: K. Missal and P. Stadler

Introduction

- Topic:
 - Computational genomics, RNA detection
- Objective target:
 - Identification and annotation of functional non-coding RNAs in given genomes by homology based methods
- Tasks:
 - Setting up a database to handle
 - Source data (genome sequences of target organisms)
 - Resulting data from analyses
 - Additional: Documentation and website
 - Process homology based analyses
 - Fill database and extract knowledge

Motivation – Why RNA?

- RNA sequence analyses answers evolutionary and phylogenetic questions
- Cellular activity without protein influence:
 - Self-splicing Introns
 - miRNAs

RNA regulates and is catalytic active

Motivation – Why non-coding RNA?

- Field of active research
- Major part of ncRNA functionality is not understood
- There is verified relation and specifity of ncRNA to
 - Diseases
 - Sex
 - Species
 - More: NONCODE
 - http://bioinfo.org.cn/NONCODE/index.htm
 - Before you think about an RNAs function, you should have one...

Procedures

- 1. Setting up the database
- 2. Homology based analyses producing data
- 3. Perform annotation
- 4. Evaluation, statistic analyses
- 5. Publication, building website to view results

- Which DB-System?
- Requirements
 - For free, OpenSource ;-)
 - Efficient operations for string manipulation
 - Support of these functions for large objects (BLOBs, CLOBs)
 - Good documentation
 - Platform: Linux, Fedora Core 2
- MySQL or PostgreSQL?

• Database state after initial loading of source data

	Ci	Cs	Od
# scaffolds	2 501	2 501 446	
Avg length(scaf) [nt]	46 674	367 798	759
Max length(scaf) [nt]	972 361	6 019 272	1 371
Min length(scaf) [nt]	3 007	1 797	5
Genome size [nt]	116 731 843	164 037 988	537 548 966
Total genome size		818 318 797	

- Calculating nc regions for Ci
 - USCS genome browser provides repeat and gene annotation:

Exon	Intron		
		Coding region	

Transcription region

• nc region = all except repeats and <u>coding</u> exons

# repeats	173 030
# genes	15 569
# coding region	15 569
# exon	104 366
# non coding	160 138

1000 Ciona intestinalis 100 frequency 10 100 1000 10000 10 length of nc regions nc regions >25 up to ~63 000 [nt]

2. Homology based analyses

• Overview:

Blast	Detect conserved elements
-------	---------------------------

- **ClustalW** Realignment of blasthits including flanking regions
- **RNAz** Scan alignments for conserved RNAsubstructures
- **Qrna** Classification: RNA, Coding, Random
- Infernal Which RNA?

Other tools?

Result: Ci ncRNA annotation

- Blast searches to find conserved elements...
 - 1. Search: nc-Ci against complete Cs genome
 - nc length > 25
 - eValue 1e-3
 - 2. Search: nc-Ci against complete Od genome
 - Same as above, but
 - only with nc-Ci sequences involved in search 1
- ... producing significant alignments.
- Idea: Od is less evolutionary related to Ci than Cs. Hits seem to be important because they are conserved

- Hits with a distance <30 nt are combined and handled as a single hit
- Results:

	CiCs	CiOd
# +strand	281 654	16 991
# -strand	296 207	16 661
# both	577 861	33 652
# combined	2 092	1

2. Realignment

- Realign blast hits (>40nt) and add flanking regions (30nt)
- ClustalW: Global alignments
- Different cases caused by different (unknown) reading directions of alignments:

(redundancy to recognise every signal)

- CiCs, 4 cases: PP, PN, NP, NN
- CiCsOd, 8 cases: PPP, PPN, ..., NNN
- Remove surrounding gaps
 RNA
- Scan with RNAz Cs
- Stepsize 50 nt, framesize 120 nt
 K. Missal ;)

Example of output

- >RNAz|Data/Al1/al_687.aln.trim|alignLength=127|Slice=1:120|RNAProb=0.999628| ConsMFE=-31.60|MeanZScore=-3.18|StrucConsIndex=0.84
- >SEQ|ci_687.1|SeqPos=1:120
- AAGGUACAAUGGACUAAAAGUCUAAAUACAAAAAUUGGGCUCGUCCGGGAUUUGAACCCGGGACCUCUCGCACCCAA AGCGAGAAUCAUACCCCUAGACCAACGAGCCAGACACAACCGC
- >SEQ|cs_687.2|SeqPos=1:119
- AUAAAGCAGAGGACAAGCACUAAAUUUAUCAAAAAUGGGCCCGUCCGGGAUUUGAACCCGGGACCUCUCGCACCCAA
 AGCGAGAAUCAUGCCCCUAGGACAACGGGCCGCUGUAAAUUC
- >RNAz|Data/Al1/al_687.aln.trim|alignLength=127|Slice=8:127|**RNAProb=0.998288**| ConsMFE=-31.60|MeanZScore=-2.86|StrucConsIndex=0.86
- >SEQ|ci_687.1|SeqPos=8:127
- AAUGGACUAAAAGUCUAAAUACAAAAAUUGGGCUCGUCCGGGAUUUGAACCCGGGACCUCUCGCACCCAAAGCGAGA
 AUCAUACCCCUAGACCAACGAGCCAGACACAACCGCUUUUCGA
- >SEQ|cs_687.2|SeqPos=8:126
- AGAGGACAAGCACUAAAUUUAUCAAAAAUGGGCCCGUCCGGGAUUUGAACCCGGGACCUCUCGCACCCAAAGCGAGA
 AUCAUGCCCCUAGGACAACGGGCCGCUGUAAAUUCUUUUCAA

• Overview of RNAz results

	# RNAz frames						
RNAProb	ALL	>0.5	>0.9	>0.99			
CiCs	1 152 951	160 233	102 628	60 386			
CiCsOd	108 864	31 734	24 016	15 580			

Clusters of putative RNA-hits are recognisable

idRnaz	idSigAlign	idScaffolds	NC_ID	scafStart		scafEnd	RNAProb	sliceStart	sliceEnd
5423	287	1	546414	346111		346229	0,853248	1	120
5426	289	1	546414	346111		346230	0,968088	1	120
5420	284	1	546414	346111		346230	0,98312	1	120
5421	284	1	546414	346115		346234	0,954782	5	124
5427	289	1	546414	346117		346236	0,780908	7	126
5429	290	1	546414	346117	\square	346234	0,699971	7	126
5424	287	1	546414	346118		346236	0,754346	8	127
5315	234	1	546788	518798	Ţ	518917	0,721804	101	220
5278	223	1	546797	521650	1	521762	0,999968	1	113
5233	213	1	546797	521652		521762	0,999985	1	111
5101	184	1	546797	521652		521762	0,99996	1	111
5250	217	1	546797	521652		521757	0,99974	1	108
5312	232	1	546797	521653		521762	0,999927	1	111
5206	206	1	546797	521653		521762	0,999949	1	111
5194	202	1	546797	521654		521762	0,999978	1	109
5105	185	1	546797	521654	7	521762	0,99997	1	109
5154	196	1	546797	521654	\square	521762	0,99998	1	109
5051	173	1	546797	521654		521762	0 999991	1	109

Merge the frames to get one "exact" start and one "exact" end

. 3.	Annotation	
ిందిం	Ci "RNA region" RNAz frames	Ci "adjusted RNA region"

n RNAz frames define 1 "RNA region", look at frames >0.5 RNAProb:

- Combine RNAz frames from the same alignment directly if they overlap
- Combine frames from different alignments if they overlap >90%
- Don't forget the "redundant" reading directions of the original alignments, last steps were done for all cases! (PP,...,NN for CiCs and PPP,...,NNN for CiCsOd)
- Try to get a "exact" reading direction by defining an "adjusted RNA region" due to the RNA that represents the cluster optimal

(n unadjusted "RNA regions" define 1 "adjusted RNA region")

The "adjusted region" only tells you: "There is signal", statistic analyses were done with each "best RNA"

• Results: ncRNAs

RNAProb	>0.5	>0.9	>0.99				
# best RNAs							
CiCs	12 861	6 316	2 740				
CiCsOd	CiCsOd 1 017		561				
avg length of best RNAs							
CiCs	~125	~130	~130				
CiCsOd	~118	~118	~119				

• Do we have ncRNAs on introns? (Calculation similar to above)

4. Statistic analyses

Are there RNAs on UTRs (first approach)? Avg length(UTR)=657

	>0.5		>0.9		>0.99	
	±200	±1000	±200	±1000	±200	±1000
CiCs	794 (6%)	<mark>515 (12%)</mark>	397 (3%)	770 (6%)	152 (1%)	352 (3%)
CiCsOd	39 (4%)	111 (11%)	14 (1%)	73 (7%)	11 (1%)	56 (6%)

second approach: If UTR>1000nt believe its annotation, if it is <1000nt add [200|1000]nt but results differ less.

third approach: Count RNAs at [200|1000]nt up- or downstream from coding region

	>0.5		>0.9		>0.99	
	±200	±1000	±200	±1000	±200	±1000
CiCs	50 (0.4%)	881 (7%)	21 (0.2%)	461 (4%)	11 (0.1%)	244 (2%)
CiCsOd	3 (0.3%)	92 (9%)	1 (0.1%)	63 (6%)	1 (0.1%)	48 (5%)

There seems to be a considerable amount of RNAs on UTRs

4. Statistic analyses

- Additional analyses and validation:
 - miRNA search: miRNA registry

http://www.sanger.ac.uk/Software/Rfam/mirna/index.shtml

– ncRNA search: NONCODE

http://www.bioinfo.org.cn/NONCODE/index.htm

- rRNA search
- Compare our ncRNAs with known RNAs from additional vertebrate genomes.
- Fold the sequences and hope that there will be exciting structures
- Check existing literature

5. Publicate results

- Results should appear in written form
- Website will be available soon

000

Thank you for your attention (patience)

Are there any questions?

;-)