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Framework of Statistical Physics

• Consider a many-particle
physical system. A spe-
cific state of the system is
a configuration c.

configuration in Ising model configuration of an HP polymer

• Assign probability distribution p(c) over space of configurations c.

p(c) =
1

Z
exp (−βE(c)) ,

where E is the energy of the configuration and β inverse temperature

• Expectation values of observables O:

〈O〉 =
1

Z

∑

c

O(c)p(c)

• since configuration space very large, cannot perform calculation of expectation
values exactly.



(First Order) Phase Transition
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PSfrag replacements

T

O
P (O)

• system behaviour changes fundamentally at
some temperature T

• actual point of interest in statistical physics
• first order transition ⇔ finite jump

• metastability at transition point
• double peak in distribution

P (O)



Markov Chain Monte Carlo

• use stochastic methods to generate configurations ci from a probability
distribution π(c). Calculate an estimator for 〈O〉 with

ŌE =

∑

N

i
π−1

i
Oipi

∑

N

i
π−1

i

lim
N→∞

ŌE = 〈O〉

• Monte Carlo is one method specifically designed to draw huge number of samples.
– trivial sampling
– importance sampling
∗ canonical sampling: choose π = p

∗ multicanonical sampling: choose more general π

• importance sampling uses a 1st order Markov process W (cn+1|cn) which drives
system to equilibrium distribution p(c).

W (cn+1|cn)p(cn) = W (cn|cn+1)p(cn+1)



Example: The Metropolis Algorithm
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E1 E2 E3

exp(−β(E2 − E1)) exp(−β(E3 − E2))

• standard example of canonical sampling
• propose move
• accept it with probability

W (cn+1|cn) = min

[

1,
p(cn)

p(cn+1)

]

= min[1, exp(−β∆E)]

• local algorithm, need to know relative energy difference only



Metropolis at First Order Transitions

• observe typical hysteresis effects
• simple Metropolis algorithm cannot tell what the right phase is
• reason: stochastic process needs to long to sample the whole phase space

(supercritical slowing down)
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The Multicanonical Metropolis Algorithm

PSfrag replacements p

π
P (E)

E

1. at first-order transitions stochastic process may
be trapped in one region (probability barrier)

2. idea: can sample from a more general probabil-
ity distribution π(c)

3. choose π(c) in a way to enhance random walks
through the whole configuration space (flat his-
togram)

π = p × W (E) = exp (−βE) × W (E)

4. need to determine W (E) prior to simulation
• self consistent approach
• usual hardes part of simulation



Determination of W (E)
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Start with

W (E) = W0(E) = 1

Do Simulation using Wn(E)

Get Histogram Pn(E)

Adjust W(E)

Wn+1(E) =
Wn(E)

Pn(E)

Pn(E) not flat

Pn(E) is flat

W (E) = Wn(E)



A Small Example

Example for the Potts model q = 7.

• here W (E) has been determined separately

• Pmuca(E) measured simulation

• physical result Pcan(E) = Pmuca(E)/W (E)



Summary

• introduced idea of Monte Carlo

• Metropolis algorithm (sample from Boltzmann distribution p)

• Multicanonical algorithm (sample from p ∗ W (E))

• Multicanonical algorithm eliminates supercritical slowing down. and allows to
study strong first-order transitions

• In my thesis I have applied this to the Abelian Higgs model


