Sibiria

Ulrike Mückstein, Stephan Bernhart

Institute for Theoretical Chemistry and Molecular Structure Biology University of Vienna

Bled, 2005

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

Outline

Motivation

Basics

Unstructured regions in RNA

Interactions in unstructured regions

RNAcofold

Results

GrUCoAl

Outline

Motivation

Basics

Unstructured regions in RNA

Interactions in unstructured regions

RNAcofold

Results

GrUCoAl

Why fold 2 RNA molecules

Many RNA functions mediated by intermolecular RNA interactions

- miRNA-siRNA pathway
- RNA editing
- Design of custom-made RNA molecules
 - e.g. "openers" for binding sites

Intermolecular interactions of RNA molecules

Nature Reviews | Molecular Cell Biology

Sfold by Ding & Lawrence

- Internal stability profile of small RNAs (5' and 3' end, average internal stability, ...)
- probability profiling for prediction of unstructured regions in the target RNA:
 - generate a representative statistical sample of target RNA structures

・ロット (雪) (日) (日)

- Sfold by Ding & Lawrence
- Internal stability profile of small RNAs (5' and 3' end, average internal stability, ...)
- probability profiling for prediction of unstructured regions in the target RNA:
 - generate a representative statistical sample of target RNA structures

(日) (母) (日) (日) (日) (日)

- Sfold by Ding & Lawrence
- Internal stability profile of small RNAs (5' and 3' end, average internal stability, ...)
- probability profiling for prediction of unstructured regions in the target RNA:
 - generate a representative statistical sample of target RNA structures

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Sfold by Ding & Lawrence
- Internal stability profile of small RNAs (5' and 3' end, average internal stability, ...)
- probability profiling for prediction of unstructured regions in the target RNA:
 - generate a representative statistical sample of target RNA structures

(日) (日) (日) (日) (日) (日) (日)

- Sfold by Ding & Lawrence
- Internal stability profile of small RNAs (5' and 3' end, average internal stability, ...)
- probability profiling for prediction of unstructured regions in the target RNA:
 - generate a representative statistical sample of target RNA structures

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Complete ensemble of secondary structures

Probability of an unstructured region

Complete ensemble of secondary structures

Probability of an unstructured region

Probability of interaction in unstructured regions

Outline

Motivation

Basics

Unstructured regions in RNA

Interactions in unstructured regions

RNAcofold

Results

GrUCoAl

Basic Algorithms

Mc Caskill: Equilibrium partition function for RNA secondary structure

ViennaRNA Package

Basic Algorithms

 Mc Caskill: Equilibrium partition function for RNA secondary structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

ViennaRNA Package

RNA Secondary Structure

- Hairpin Loops
- Interior Loops
- Multiloops
- Exterior Loops

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Loop decomposition of RNA Secondary Structure

$$\blacktriangleright F(S) = \sum_{L \in S} F_L.$$

Probability of a given secondary structure

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

• $Q = \sum_{S} e^{-[F(S)/kT]}$ • $P(S) = \frac{1}{Q} e^{-[F(S)/kT]}$

Probability of a given secondary structure

・ロト・日本・日本・日本・日本・日本

•
$$Q = \sum_{S} e^{-[F(S)/kT]}$$

• $P(S) = \frac{1}{Q} e^{-[F(S)/kT]}$

Outline

Motivation

Basics

Unstructured regions in RNA

Interactions in unstructured regions

RNAcofold

Results

GrUCoAl

$Pr_u[i, j]$: region *i*, *j* contains no secondary structure

trivial case: region i, j is exterior to all loops.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$Pr_u[i, j]$: region *i*, *j* contains no secondary structure

region i, j is spanned by a basepair (p, q).

$$Pr_u[i,j] + = \sum_{\substack{p < i \ j < q}} Prob[p,q] \frac{Qpq_u[i,j]}{Qb[p,q]}.$$

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

$Qpq_u[i, j]$: unpaired region *i*, *j* enclosed by pair (*p*, *q*):

base pair (p, q) closes a Hairpin loop:

$$Qpq_u[i,j] = e^{-\beta H(p,q)} + \dots$$

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

 $Qpq_u[i, j]$: unpaired region *i*, *j* enclosed by pair (*p*, *q*):

base pair (p, q) closes an Interior loop:

$$Qpq_{u}[i,j] + = \sum_{\substack{p < i \leq j < k \\ l < i \leq j < q}} e^{-\beta l(p,q,k,l)} Qb[k,l] + \dots$$

▲日▶▲圖▶▲圖▶▲圖▶ 圖 のQC

 $Qpq_u[i, j]$: unpaired region *i*, *j* enclosed by pair (*p*, *q*):

base pair (p, q) closes a Multiloop:

 $Qpq_u[i, j] + = \sum_{p < i \le j < q}$

 $\Big(\textit{Qm2[p+1, i-1]e}^{-\beta u(j-i+1)} + \textit{Qm[p+1, i-1]e}^{-\beta u(j-i+1)}\textit{Qm[j+1, q-1]} + e^{-\beta u(j-i+1)}\textit{Qm2[j+1, q-1]}\Big).$

◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 → ⊙ < ⊙

 $Pr_u[i, j]$: region *i*, *j* contains no secondary structure

$$Pr_u[i,j] = \frac{Q[1,i-1]Q[j+1,N]}{Q[1,N]} + \sum_{p < i < j < q} Prob[p,q] \frac{Qpq_u[i,j]}{Qb[p,q]}.$$

Outline

Motivation

Basics

Unstructured regions in RNA

Interactions in unstructured regions

RNAcofold

Results

GrUCoAl

unstructured region i, j is paired to i^*, j^* :

 $Qup[i, j, i^*, j^*] = Pr_u[i, j] \sum_{\substack{i < k < j \\ i^* > k^* > j^*}} Qp[i, k, i^*, k^*] e^{-\beta l(k, k^*; j, j^*)}.$

▲ロ▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

unstructured region i, j is paired to i^*, j^* :

$$Pup[i, j, i^*, j^*] = \frac{Qup[i, j, i^*, j^*]}{Qup}.$$

where
$$Qup = \sum_{i, j, i^*, j^*} Qup[i, j, i^*, j^*].$$

position *i* is contained in a target site for a small RNA

$$Pup[i, j] = \sum_{i^*, j^*} Pup[i, j, i^*, j^*].$$

and

$$Pup[k] = \sum_{i \le k \le j} Pup[i, j].$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ���

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへ⊙

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Interaction of human enx-1 with miRNA mir101

ENX-1 (22) mir101 2 target sites (178, 232)

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 のへで

Interaction of human bdnf with miRNA mir1b 176-185 p=0.99, 348-358, p<0.01

Interaction of human bdnf with miRNA mir1b 176-185 p=0.99, 348-358, p<0.01

seed sequence: ACATTCC

Interaction of human sdf-1 with miRNA mir23a

SDF_1 (23) mir23a (186, 251)

▲ロ▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

2 Parts of one Solution

Outline

Motivation

Basics

Unstructured regions in RNA

Interactions in unstructured regions

RNAcofold

Results

GrUCoAl

RNAcofold

- Variant of RNAfold
- Concatenate the 2 molecules
- Define cut between molecules

RNA Secondary Structure Free Energy

Free Energy is sum of Loop contributions:

- Interior Loops
- Hairpin Loops
- Multi loops
- Exterior Loops

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 「臣」 のへで

Partition Function

Partition function of segment i, j

$$Q_{ij} = Q_{i+1,j} + \sum_{i < k \le j} Q_{i,k}^B Q_{k+1,j}$$

$$Q_{i,j}^B = \mathcal{H}(i,j) + \sum_{i < k < l < j} Q_{kl}^B \mathcal{I}(i,j;k,l) + Q_{i+1,j-1}^M a$$

$$Q_{i,j}^M = Q_{i+1,j}^M c + \sum_{i < k \le j} Q_{i,k}^B b Q_{k+1,j}^{M1}$$

$$Q_{i,j}^{M1} = Q_{i+1,j}^{M1} + \sum_{i < k < j} Q_{i,k}^B b Q_{k+1,j}^{M1} + \sum_{i < k \le j} Q_{i,k}^B b (j-k) c$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Partition Function

Parts to be checked when cofolding

$$Q_{ij} = Q_{i+1,j} + \sum_{i < k \le j} Q_{i,k}^{B} Q_{k+1,j}$$

$$Q_{i,j}^{B} = \mathcal{H}(i,j) \lor Q_{i+1,||} Q_{||,j-1} + \sum_{i < k < l < j} Q_{kl}^{B} \mathcal{I}(i,j;k,l) + Q_{i+1,j-1}^{M} a$$

$$Q_{i,j}^{M} = Q_{i+1,j}^{M} c + \sum_{i < k \le j} Q_{i,k}^{B} b Q_{k+1,j}^{M1}$$

$$Q_{i,j}^{M1} = Q_{i+1,j}^{M1} + \sum_{i < k < j} Q_{i,k}^{B} b Q_{k+1,j}^{M1} + \sum_{i < k \le j} Q_{i,k}^{B} b Q_{k+1,j}^{M1}$$

Output: Dot Plot

Outline

Motivation

Basics

Unstructured regions in RNA

Interactions in unstructured regions

RNAcofold

Results

GrUCoAl

Setting Wenn du nicht überzeugen kannst, stifte Verwirrung

三 のへの

Interaction of human sdf-1 with miRNA mir23a

SDF_1 (23) mir23a (186, 251)

▲ロ▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

SDF1

SDF1

wt

HoxA5, position 185-230

Enx1, position 150-235

BRN3-b

・ロト・日本・日本・日本・日本・日本

BRN3-b

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

BRN3-b

▲口> ▲□> ▲目> ▲目> 三日 ろんの

Outline

Motivation

Basics

Unstructured regions in RNA

Interactions in unstructured regions

RNAcofold

Results

GrUCoAl

Problems

Solution?

- Great Unified Cofolding Algorithm
- Cofolding including intermolecular Pseudo-knots and pair probabilities

 Will be expensive computationally and in memory requirements

Unification of RNAcofold and RNAup

First assume no intramolecular base pairs in smaller molecule

- Start with Cofold $\mathcal{O}((n_A + n_B)^3)$ proc. $\mathcal{O}((n_A + n_B)^2)$
- ► Use RNAup routines, compute intermolecular partition functions (O(n³))
- ► Use RNAup routines, compute partition functions given that pair *i*, *j* is innermost base-pair enclosing a binding site. (O(n³))

(日) (日) (日) (日) (日) (日) (日)

Unification II

- Compute partition functions given duplex between *i* and *j* (Like Fold, (O(n³)))
- Compute partition functions for intra-molecular pairs given Pseudo-knot. O(n³)

(日) (日) (日) (日) (日) (日) (日)

Run modified RNAup to get the partition functions of intermolecular pairs given Pseudo-knot. O(n³)

Unification III

- Will take up to six times longer than a simple Cofold
- Will take four to six times more memory.
- Still has time complexity of O(n³) in processor time and O(n²) in memory.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●
Thanks to

Ivo Hofacker Christoph Flamm Andrea Tanzer Peter Stadler ...and the wonderful audience