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Systems Biology

» Cells are complex systems

» In the face of continuously changing environments and its
state, cells need to respond appropriately:

» inputs: nutrients, repellants, heat shock, DNA damage, ...

» responses: movement, growth, protein production, death
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Systems Biology

» Complex networks of genes and pathways are involved in
mediating the various inputs to the appropriate responses
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Signal transduction network: Hanahan and Weinberg, Cell (2000)
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Forward Problems

» Consider ODE models: y(t) = f(y(t),q)
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Forward Problems

» Consider ODE models: y(t) = f(y(t),q)
» The Forward analysis may include:

» numerical integration for a set of given parameters
» sensitivity analysis
» bifurcation analysis

reactions — g—}’ =f(y,q) — {y(t), bifurcations}
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Inverse Problems

» In Inverse Problems, one looks for the causes of observed
and desired effects

reactions «— f'j—‘t’ =f(y,q) < {y(t), bifurcations}
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» In Inverse Problems, one looks for the causes of observed
and desired effects
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» Parameter identification from time-course data
» Inverse bifurcation: infer model mechanisms that can
achieve the desired bifurcation behaviors

» maximize the parameter domain for oscillations
» place bifurcation points at the desired locations
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» Parameter identification from time-course data
» Inverse bifurcation: infer model mechanisms that can
achieve the desired bifurcation behaviors

» maximize the parameter domain for oscillations
» place bifurcation points at the desired locations

» Inverse problems are typically ill-posed:

» solutions may not exist or unique
» the solution may not depend on the data in a continuous
manner
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Inverse Problems

» In Inverse Problems, one looks for the causes of observed
and desired effects

reactions « 3—1’ =f(y,q) < {y(t), bifurcations}

» Parameter identification from time-course data
» Inverse bifurcation: infer model mechanisms that can
achieve the desired bifurcation behaviors

» maximize the parameter domain for oscillations
» place bifurcation points at the desired locations

» Inverse problems are typically ill-posed:

» solutions may not exist or unique
» the solution may not depend on the data in a continuous
manner

» To numerically tackle inverse problems, regularization
strategies are needed
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Inverse Problems

» Forward operator equation:

F(a)=y
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Inverse Problems

» Forward operator equation:

F(a)=y

» Inverse problem: determining g fromy
» Typically ill-posed (in the sense of Hadamard):

» NoNn-unigueness;
» instability of inversion

» Variational regularization: add penalty term

mqinIIF(Q) =yl +uz(q)
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Inverse Problems

» Forward operator equation:

Fla)=y

Inverse problem: determining g fromy
Typically ill-posed (in the sense of Hadamard):
» NoNn-unigueness;
» instability of inversion

Variational regularization: add penalty term

v
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mqinIIF(Q) =yl +uz(q)
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While stabilizing ill-posed problems, regularization brings
bias to the solution
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Inverse Problems

» Forward operator equation:

Fla)=y

» Inverse problem: determining g fromy

» Typically ill-posed (in the sense of Hadamard):
» NoNn-unigueness;
» instability of inversion

» Variational regularization: add penalty term
min|[F(q) —yll+n2(q)

» While stabilizing ill-posed problems, regularization brings
bias to the solution

» For biological problems, usually want to find solutions that
are sparse, i.e., having as few non-zero entries as
possible: Ockam'’s razor
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Sparsity-Promoting Regularization

» As the regularization term, consider smoothed functionals
R" — R: Ipe(q) = Zi(Qiz+ E)p/z

James Lu Inverse Methods in Systems Biology



Sparsity-Promoting Regularization

» As the regularization term, consider smoothed functionals
R" = R: lpe(q) = Zi(Qiz+ S)p/z
» Convex only within the box {q: |gi| < V&, 0<i <n}
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Sparsity-Promoting Regularization

» As the regularization term, consider smoothed functionals
R" — R: Ipe(q) = Zi(Qiz+ £)P/2
» Convex only within the box {q: |gi| < V&, 0<i <n}
» Recent applications of sparse solutions using non-convex
penalty:
» Exact reconstruction of sparse signals via nonconvex
minimization, R. Chartrand (2007)
» Compressive sensing using |1 re-weighting, E. Candes, S.
P. Boyd, M. Wakin et al. (2007)
» Log-det heuristic for matrix rank minimization with
applications to Hankel and Euclidean distance matrices, M.
Fazel, H. Hindi and S. P Boyd (2003)
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Inverse Bifurcation: the G;/Smodule of cell cycle
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Inverse Bifurcation: the G;/Smodule of cell cycle
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Inverse Bifurcation: the G;/Smodule of cell cycle
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» Which of the interactions play important roles in controlling
the geometry of the bifurcation diagram?
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Inverse Bifurcation: the G;/Smodule of cell cycle

» Map various bifurcation phenotypes to parameter sets
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Inverse Bifurcation: the G;/Smodule of cell cycle

» Map various bifurcation phenotypes to parameter sets

» Consider the following 3 modes of transformations of the
nominal bifurcation diagram:

Elongating
- saddle-nose

Transformations
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Inverse Bifurcation: the G;/Smodule of cell cycle

» Map various bifurcation phenotypes to parameter sets

» Consider the following 3 modes of transformations of the
nominal bifurcation diagram:
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Inverse Bifurcation: the G;/Smodule of cell cycle

» Map various bifurcation phenotypes to parameter sets

» Consider the following 3 modes of transformations of the
nominal bifurcation diagram:
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Inverse Bifurcation: the G;/Smodule of cell cycle

» Map various bifurcation phenotypes to parameter sets

» Consider the following 3 modes of transformations of the
nominal bifurcation diagram:
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Parameter list

Mammalian G /S transition

Inverse Bifurcation: effect of sparsity-promiting penalty
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Inverse

Bifurcation: effect of sparsity-promiting penalty

Parameter list

Mammalian G /S transition Mammalian G,/S transition
8| 8|
6) 6|
~ =
g / £
w4 ® sn w4 SN
.
~
2| Trea
o)

0 2 4 6 8
Fm
i)
P
PhIE2FL g
phcycoa ' g
Kma
12 B
iaa i B
a
i3 !
o 1 |
Kmd
25 I 1
s
K61 ! s I}
Kmi i =l | =
1 i B s =
62 ; T phinRBp) o
mott g " I I
iCycEal | > m; | |
‘ohcyee: 365
shpRps I £ iz i 1
‘hpRB) i : 8 : :
ohiAp L
o | 8 meya | |
PhpRE : oncyee i i
kmo i
33| I fibes 1 i
E . i i
ans| I %68 I I
a1s| bt
H I i e I I
o I | I I
@ 68
k28| ! = ! !
23 I a8 I i
@ s
K67 ! ke | ! !
a3 i pd | |
EY o + 3 2 T B T p 3
% change

EY =
% change

(b) 11,104 regularization (c) I, regularization

James ds in Systems Biology



Inverse Bifurcation: identified module

Table: Result of hierarchical algorithm with p=0.1,& = 10~*

ky T 33.8%

Kip | 21.7%
Jio | 20.1%

Modification Case Levelj=1 Level j=2 Level j=3
Elongating SN; nose kp | 14.3% ks 13L7% @np-1 | 20.9%
Kz 1 6.4% @eor1 1 7.3%
Moving SNy, to right || Ky 12693% | Ji1T1917% | ko | 39.9%
kp 117.3% @eorr L 117%
Kme | 10.3%
Decreasing bistabiliy || Ji171285% | ky 11691% | k, | 437%

@eor1 | 28.3%
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Inverse Bifurcation: identified module
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Application: Circadian Rhythm Model

» Circadian rhythm underlies the 24 hr activity cycle of many
organisms
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» Circadian rhythm underlies the 24 hr activity cycle of many
organisms
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Application: Circadian Rhythm Model

» Circadian rhythm underlies the 24 hr activity cycle of many
organisms

» Endogenous oscillator entrainable by 24 hr light-dark cycles

» Circadian model for Arabidopsis thaliana proposed by Locke et
al, Molecular Systems Biology (2005)
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Application: Circadian Rhythm Model
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Application: Circadian Rhythm Model

» Simulation of model with nominal parameters under 12 hr
light-dark cycle
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Application: Circadian Rhythm Model

» Evidence suggests GIGANTEA could be gene Y
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J. CW Locke et al., Molecular Systems Biology (2005)
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Application: Circadian Rhythm Model

» Evidence suggests GIGANTEA could be gene Y
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Phase misfit with experimental data

J. CW Locke et al., Molecular Systems Biology (2005)

» Inverse problem: vary parameters so that Y mRNA peaks
at ZT7 rather than ZT11
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Application: Circadian Rhythm Model

» The peak time f for the level of Y mRNA, satisfies

yit)y = f(y,q
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Application: Circadian Rhythm Model

» The peak time f for the level of Y mRNA, satisfies

yit)y = f(y,q

fymrna(y(t),q) = O

» Goal: obtain a solution that peaks at time t* by varying as
few parameters from the published values, g*, as possible
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Application: Circadian Rhythm Model

» The peak time f for the level of Y mRNA, satisfies

yit)y = f(y,q

fymrna(y(t),q) = O

» Goal: obtain a solution that peaks at time t* by varying as
few parameters from the published values, g*, as possible

» Minimization of the objective:

[E(q) = )12+ ulpe(q—g*) — min
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Application: Circadian Rhythm Model

» Y mRNA solution profile for the original parameter set
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Application: Circadian Rhythm Model

» Y mRNA solution profile for the identified parameter set
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Application: Circadian Rhythm Model

» Y mRNA solution profile for the identified parameter set
» 1 out of 54 parameters is identified
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Application: Circadian Rhythm Model

» Identified parameter: g6, Hill-constant in repression of
gene Y by LHY
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Inverse Eigenvalue Problems

» We have seen inverse bifurcation problems inferring the
underlying mechanisms controlling the qualitative aspects
of dynamics
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Inverse Eigenvalue Problems

» We have seen inverse bifurcation problems inferring the
underlying mechanisms controlling the qualitative aspects
of dynamics

» One may also wish to probe the possibility of different
classes of behaviors; e.g., transition of a bistable switch to
an oscillator
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Inverse Eigenvalue Problems

» We have seen inverse bifurcation problems inferring the
underlying mechanisms controlling the qualitative aspects
of dynamics

» One may also wish to probe the possibility of different
classes of behaviors; e.g., transition of a bistable switch to
an oscillator

» Infer mechanisms governing the spectrum of the
dynamical system: inverse eigenvalue problems
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Inverse Eigenvalue Problems

» For the dynamical system y(t) = f(y,q), many bifurcations
of equilibrium correspond to various conditions on
eigenvalues of %
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Inverse Eigenvalue Problems

» For the dynamical system y(t) = f(y,q), many bifurcations
of equilibrium correspond to various conditions on

eigenvalues of W

» Inverse eigenvalue problems: identify the possible model
mechanisms bringing about the desired change in the
spectrum

NN
T AT =

(d) Hopf (e) BT (f) Fold-Hopf (9) Hopf-Hopf
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Inverse Eigenvalue Problems

» Hybrid solution algorithm:
» Lift-and-Project (LP)
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Inverse Eigenvalue Problems

» Hybrid solution algorithm:
» Lift-and-Project (LP)
» Quasi-Newton (QN)
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Inverse Eigenvalue Problems

» Hybrid solution algorithm:
» Lift-and-Project (LP)
» Quasi-Newton (QN)
» Least square formulations with sparsity regularization:

LP : J(a) = |A(G) — Aproj[| + Hlpe(d—d)
QN @ (@) =Y |Ai(a) = A+ plpe(a—a)
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Inverse Eigenvalue Problems

» Hybrid solution algorithm:
» Lift-and-Project (LP)
» Quasi-Newton (QN)
» Least square formulations with sparsity regularization:

LP : J(a) = |A(G) — Aproj[| + Hlpe(d—d)
QN @ (@) =Y |Ai(a) = A+ plpe(a—a)

Convergerce history of the smallest eigenvalus pair
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Transition of a Bistable Switch to an Oscillator

» Consider a model for GATA transcription factors
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Transition of a Bistable Switch to an Oscillator

» Consider a model for GATA transcription factors
» Scenario: duplication of a gene A — Al, A2
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Transition of a Bistable Switch to an Oscillator

» Consider a model for GATA transcription factors
» Scenario: duplication of a gene A — Al, A2

» Subsequent loss of the activating domain

0%0)
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Transition of a Bistable Switch to an Oscillator

» Consider a model for GATA transcription factors
» Scenario: duplication of a gene A — Al, A2

» Subsequent loss of the activating domain

0%0)

» Can oscillations emerge via a few additional mutations?
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Transition of a Bistable Switch to an Oscillator

» Evolutionary scenario
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Transition of a Bistable Switch to an Oscillator

» Evolutionary scenario

Sol ution for moters
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Transition of a Bistable Switch to an Oscillator

» Evolutionary scenario

Solution for initial parameters

o0 A0 c000 000 10000

» |dentified reactions:

iy .l
AIwLE[t] = L
AL's
BT redd[t] = gl 0L

AT red[t] = 24 A1 A2dt]
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Conclusions

» Many inverse problems arise from the modelling and
analysis of biological systems
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Conclusions

» Many inverse problems arise from the modelling and
analysis of biological systems

» inverse bifurcation problems: reverse engineering,
matching model to data
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Conclusions

» Many inverse problems arise from the modelling and
analysis of biological systems
» inverse bifurcation problems: reverse engineering,
matching model to data
» inverse eigenvalue problems: model-building, exploration of
possible behaviors
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Conclusions

» Many inverse problems arise from the modelling and
analysis of biological systems
» inverse bifurcation problems: reverse engineering,
matching model to data
» inverse eigenvalue problems: model-building, exploration of
possible behaviors

» Sparsity-promoting regularization can be effective in
drawing useful insights from biological models
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