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Systems Biology

◮ Cells are complex systems

◮ In the face of continuously changing environments and its
state, cells need to respond appropriately:

◮ inputs: nutrients, repellants, heat shock, DNA damage, ...

◮ responses: movement, growth, protein production, death
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Systems Biology

◮ Complex networks of genes and pathways are involved in
mediating the various inputs to the appropriate responses

Signal transduction network: Hanahan and Weinberg, Cell (2000)
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Forward Problems

◮ Consider ODE models: ẏ(t) = f (y(t),q)
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Forward Problems

◮ Consider ODE models: ẏ(t) = f (y(t),q)

◮ The Forward analysis may include:
◮ numerical integration for a set of given parameters
◮ sensitivity analysis
◮ bifurcation analysis

reactions→ dy
dt = f (y,q)→ {y(t), bifurcations}
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Inverse Problems

◮ In Inverse Problems, one looks for the causes of observed
and desired effects

reactions← dy
dt = f (y,q)← {y(t), bifurcations}
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Inverse Problems

◮ In Inverse Problems, one looks for the causes of observed
and desired effects

reactions← dy
dt = f (y,q)← {y(t), bifurcations}

◮ Parameter identification from time-course data
◮ Inverse bifurcation: infer model mechanisms that can

achieve the desired bifurcation behaviors

◮ maximize the parameter domain for oscillations
◮ place bifurcation points at the desired locations

◮ Inverse problems are typically ill-posed :

◮ solutions may not exist or unique
◮ the solution may not depend on the data in a continuous

manner

◮ To numerically tackle inverse problems, regularization
strategies are needed
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Inverse Problems

◮ Forward operator equation:

F(q) = y

◮ Inverse problem: determining q from y
◮ Typically ill-posed (in the sense of Hadamard):

◮ non-uniqueness;
◮ instability of inversion

◮ Variational regularization: add penalty term

min
q
‖F(q)− y‖+ µR(q)

◮ While stabilizing ill-posed problems, regularization brings
bias to the solution

◮ For biological problems, usually want to find solutions that
are sparse, i.e., having as few non-zero entries as
possible: Ockam’s razor

James Lu Inverse Methods in Systems Biology



Sparsity-Promoting Regularization

◮ As the regularization term, consider smoothed functionals
R

n→ R: lp,ε(q) = ∑i(q
2
i + ε)p/2
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Sparsity-Promoting Regularization

◮ As the regularization term, consider smoothed functionals
R

n→ R: lp,ε(q) = ∑i(q
2
i + ε)p/2

◮ Convex only within the box {q : |qi|<
√

ε, 0 < i≤ n}
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Sparsity-Promoting Regularization

◮ As the regularization term, consider smoothed functionals
R

n→ R: lp,ε(q) = ∑i(q
2
i + ε)p/2

◮ Convex only within the box {q : |qi|<
√

ε, 0 < i≤ n}
◮ Recent applications of sparse solutions using non-convex

penalty:
◮ Exact reconstruction of sparse signals via nonconvex

minimization, R. Chartrand (2007)
◮ Compressive sensing using l1 re-weighting, E. Candes, S.

P. Boyd, M. Wakin et al. (2007)
◮ Log-det heuristic for matrix rank minimization with

applications to Hankel and Euclidean distance matrices, M.
Fazel, H. Hindi and S. P Boyd (2003)
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Inverse Bifurcation: the G1/S module of cell cycle

M. Swat, A. Kel, H. Herzel, Bioinformatics (2004)
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Inverse Bifurcation: the G1/S module of cell cycle
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◮ Which of the interactions play important roles in controlling
the geometry of the bifurcation diagram?
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Inverse Bifurcation: the G1/S module of cell cycle
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Inverse Bifurcation: the G1/S module of cell cycle

◮ Map various bifurcation phenotypes to parameter sets
◮ Consider the following 3 modes of transformations of the

nominal bifurcation diagram:

◮ Inverse bifurcation problem: from conditions on bifurcation
diagrams, infer the governing mechanisms
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Inverse Bifurcation: effect of sparsity-promiting penalty
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Inverse Bifurcation: effect of sparsity-promiting penalty
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(b) l0.1,10−4 regularization
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Inverse Bifurcation: identified module

Table: Result of hierarchical algorithm with p = 0.1,ε = 10−4

Modification Case Level j = 1 Level j = 2 Level j = 3

Elongating SN1 nose kp ↓ 14.3% k34 ↑ 31.7% φAP-1 ↓ 20.9%
Km2 ↑ 6.4% φE2F1 ↑ 7.3%

Moving SN1,2 to right Km4 ↑ 269.3% J11 ↑ 191.7% k2 ↓ 39.9%
kp ↑ 17.3% φE2F1 ↓ 11.7%

Km2 ↓ 10.3%
Decreasing bistabiliy J11 ↑ 128.5% k1 ↑ 169.1% k2 ↓ 43.7%

kp ↑ 33.8% Km2 ↓ 21.7% φE2F1 ↓ 28.3%
J12 ↓ 20.1%
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Inverse Bifurcation: identified module

d
dt

[pRB] = k1
[E2F1]

Km1+[E2F1]

J11

J11+[pRB]

J61

J61+[pRBp]
− k16[pRB][CycDa]+ k61[pRBp]−φpRB[pRB],

d
dt
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+ · · ·

d
dt
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Application: Circadian Rhythm Model

◮ Circadian rhythm underlies the 24 hr activity cycle of many
organisms
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Application: Circadian Rhythm Model

◮ Circadian rhythm underlies the 24 hr activity cycle of many
organisms

◮ Endogenous oscillator entrainable by 24 hr light-dark cycles

◮ Circadian model for Arabidopsis thaliana proposed by Locke et
al, Molecular Systems Biology (2005)
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Application: Circadian Rhythm Model

ODE system
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Application: Circadian Rhythm Model

◮ Simulation of model with nominal parameters under 12 hr
light-dark cycle
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Application: Circadian Rhythm Model

◮ Evidence suggests GIGANTEA could be gene Y

Phase misfit with experimental data

J. CW Locke et al., Molecular Systems Biology (2005)
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Application: Circadian Rhythm Model

◮ Evidence suggests GIGANTEA could be gene Y

Phase misfit with experimental data

J. CW Locke et al., Molecular Systems Biology (2005)

◮ Inverse problem: vary parameters so that Y mRNA peaks
at ZT7 rather than ZT11
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Application: Circadian Rhythm Model

◮ The peak time t̂ for the level of Y mRNA, satisfies

ẏ(t) = f (y,q)
fYmRNA(y(t̂),q) = 0
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◮ The peak time t̂ for the level of Y mRNA, satisfies

ẏ(t) = f (y,q)
fYmRNA(y(t̂),q) = 0

◮ Goal: obtain a solution that peaks at time t̂∗ by varying as
few parameters from the published values, q∗, as possible
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Application: Circadian Rhythm Model

◮ The peak time t̂ for the level of Y mRNA, satisfies

ẏ(t) = f (y,q)
fYmRNA(y(t̂),q) = 0

◮ Goal: obtain a solution that peaks at time t̂∗ by varying as
few parameters from the published values, q∗, as possible

◮ Minimization of the objective:

‖t̂(q)− t̂∗‖2 + µ lp,ε (q−q∗)→min
q
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Application: Circadian Rhythm Model

◮ Y mRNA solution profile for the original parameter set
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Application: Circadian Rhythm Model

◮ Y mRNA solution profile for the identified parameter set
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Application: Circadian Rhythm Model

◮ Y mRNA solution profile for the identified parameter set
◮ 1 out of 54 parameters is identified
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Application: Circadian Rhythm Model

◮ Identified parameter: g6, Hill-constant in repression of
gene Y by LHY
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Inverse Eigenvalue Problems

◮ We have seen inverse bifurcation problems inferring the
underlying mechanisms controlling the qualitative aspects
of dynamics
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an oscillator
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Inverse Eigenvalue Problems

◮ We have seen inverse bifurcation problems inferring the
underlying mechanisms controlling the qualitative aspects
of dynamics

◮ One may also wish to probe the possibility of different
classes of behaviors; e.g., transition of a bistable switch to
an oscillator

◮ Infer mechanisms governing the spectrum of the
dynamical system: inverse eigenvalue problems
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Inverse Eigenvalue Problems

◮ For the dynamical system ẏ(t) = f (y,q), many bifurcations
of equilibrium correspond to various conditions on
eigenvalues of df (y,q)

dy
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Inverse Eigenvalue Problems

◮ For the dynamical system ẏ(t) = f (y,q), many bifurcations
of equilibrium correspond to various conditions on
eigenvalues of df (y,q)

dy

◮ Inverse eigenvalue problems: identify the possible model
mechanisms bringing about the desired change in the
spectrum

(d) Hopf (e) BT (f) Fold-Hopf (g) Hopf-Hopf
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Inverse Eigenvalue Problems

◮ Hybrid solution algorithm:
◮ Lift-and-Project (LP)
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Inverse Eigenvalue Problems

◮ Hybrid solution algorithm:
◮ Lift-and-Project (LP)
◮ Quasi-Newton (QN)

◮ Least square formulations with sparsity regularization:

LP : J(q) = ‖A(q)−Aproj‖2F + µ lp,ε(q−q∗)
QN : J(q) = ∑

i

|λi(q)−λ d
i |2 + µ lp,ε(q−q∗)
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Transition of a Bistable Switch to an Oscillator

◮ Consider a model for GATA transcription factors
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Transition of a Bistable Switch to an Oscillator

◮ Consider a model for GATA transcription factors
◮ Scenario: duplication of a gene A→ A1, A2

◮ Subsequent loss of the activating domain

◮ Can oscillations emerge via a few additional mutations?
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Transition of a Bistable Switch to an Oscillator

◮ Evolutionary scenario
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Transition of a Bistable Switch to an Oscillator

◮ Evolutionary scenario
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Transition of a Bistable Switch to an Oscillator

◮ Evolutionary scenario
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◮ Identified reactions:
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Conclusions

◮ Many inverse problems arise from the modelling and
analysis of biological systems
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Conclusions

◮ Many inverse problems arise from the modelling and
analysis of biological systems

◮ inverse bifurcation problems: reverse engineering,
matching model to data

◮ inverse eigenvalue problems: model-building, exploration of
possible behaviors

◮ Sparsity-promoting regularization can be effective in
drawing useful insights from biological models
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