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Hypergraphs

• A hypergraph is a pair H = (V ,E ) with vertex set V 6= /0 and a family
of edges E where the edges are subsets of V .
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• A hypergraph H is simple, if no edge of H is contained in any other
edge and each edge consists of at least two elements.
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Hypergraph Products

• For all products H1 ⋆H2:

V (H1 ⋆H2) = V (H1)×V (H2)

1. Restriction to graphs are the common graph products

2. Associativity

3. Commutativity

4. Distributivity w.r.t. the disjoint union

5. Products of simple hypergraphs are simple

6. The projections pi : V (H1 ⋆H2) → V (Hi) for i ∈ {1,2} are at least
weak homomorphisms

7. Unique prime factorization
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The strong product is a special case of the direct product:

• LH := (V (H),E (H)∪{{v} | v ∈ V (H)}),

• NH := (V (H),E (H)\{{v} | v ∈ V (H)})
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and |pi(E)| = 1 for all i ∈ I \{j}
}

• Cartesian product of infinitely many connected hypergraphs is not
connected
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