Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

Lydia Gringmann

Bioinformatik Leipzig

February 16, 2010

Prime Factorization w.r.t the Cartesian Product

Outline

1. Hypergraph Products

- The Cartesian Product
- The Direct Product
- The Strong Product
- 2. Prime Factorization w.r.t. the Cartesian product

Prime Factorization w.r.t the Cartesian Product

Outline

1. Hypergraph Products

- The Cartesian Product
- The Direct Product
- The Strong Product
- 2. Prime Factorization w.r.t. the Cartesian product

Prime Factorization w.r.t the Cartesian Product

Outline

- 1. Hypergraph Products
 - The Cartesian Product
 - The Direct Product
 - The Strong Product
- 2. Prime Factorization w.r.t. the Cartesian product

Prime Factorization w.r.t the Cartesian Product

Outline

- 1. Hypergraph Products
 - The Cartesian Product
 - The Direct Product
 - The Strong Product

2. Prime Factorization w.r.t. the Cartesian product

Prime Factorization w.r.t the Cartesian Product

Outline

- 1. Hypergraph Products
 - The Cartesian Product
 - The Direct Product
 - The Strong Product
- 2. Prime Factorization w.r.t. the Cartesian product

Prime Factorization w.r.t the Cartesian Product

Hypergraphs

 A hypergraph is a pair H = (V, ℰ) with vertex set V ≠ Ø and a family of edges ℰ where the edges are subsets of V.

• A hypergraph *H* is simple, if no edge of *H* is contained in any other edge and each edge consists of at least two elements.

Prime Factorization w.r.t the Cartesian Product

Hypergraphs

 A hypergraph is a pair H = (V, ℰ) with vertex set V ≠ Ø and a family of edges ℰ where the edges are subsets of V.

• A hypergraph *H* is simple, if no edge of *H* is contained in any other edge and each edge consists of at least two elements.

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

Hypergraph Products

• For all products $H_1 \star H_2$:

$$V(H_1 \star H_2) = V(H_1) \times V(H_2)$$

- 1. Restriction to graphs are the common graph products
- 2. Associativity
- 3. Commutativity
- 4. Distributivity w.r.t. the disjoint union
- 5. Products of simple hypergraphs are simple
- 6. The projections $p_i : V(H_1 \star H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are at least weak homomorphisms
- 7. Unique prime factorization

Prime Factorization w.r.t the Cartesian Product

The Cartesian Product

Edge set of the Cartesian Product $H_1 \Box H_2$ of two hypergraphs H_1, H_2

$$\mathscr{E}(H_1 \Box H_2) = \{ \{ x \} \times F : x \in V(H_1), F \in \mathscr{E}(H_2) \}$$
$$\cup \{ E \times \{ y \} : E \in \mathscr{E}(H_1), y \in V(H_2) \}$$

Prime Factorization w.r.t the Cartesian Product

The Cartesian Product

Edge set of the Cartesian Product $H_1 \Box H_2$ of two hypergraphs H_1, H_2

$$\mathscr{E}(H_1 \Box H_2) = \{ \{x\} \times F : x \in V(H_1), F \in \mathscr{E}(H_2) \}$$
$$\cup \{ E \times \{y\} : E \in \mathscr{E}(H_1), y \in V(H_2) \}$$

I.e., $\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathscr{E}(H_1 \Box H_2)$

Prime Factorization w.r.t the Cartesian Product

The Cartesian Product

Edge set of the Cartesian Product $H_1 \Box H_2$ of two hypergraphs H_1, H_2

$$\mathscr{E}(H_1 \Box H_2) = \{ \{x\} \times F : x \in V(H_1), F \in \mathscr{E}(H_2) \}$$
$$\cup \{ E \times \{y\} : E \in \mathscr{E}(H_1), y \in V(H_2) \}$$

I.e.,
$$\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathscr{E}(H_1 \Box H_2) \iff$$

(i) $\{x_1, \dots, x_r\} \in \mathscr{E}(H_1) \text{ and } y_1 = \dots = y_r, \text{ or }$

Prime Factorization w.r.t the Cartesian Product

The Cartesian Product

Edge set of the Cartesian Product $H_1 \Box H_2$ of two hypergraphs H_1, H_2

$$\mathscr{E}(H_1 \Box H_2) = \{\{x\} \times F : x \in V(H_1), F \in \mathscr{E}(H_2)\}$$
$$\cup \{E \times \{y\} : E \in \mathscr{E}(H_1), y \in V(H_2)\}$$

I.e.,
$$\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathscr{E}(H_1 \Box H_2) \iff$$

(i) $\{x_1, \dots, x_r\} \in \mathscr{E}(H_1) \text{ and } y_1 = \dots = y_r, \text{ or}$
(ii) $\{y_1, \dots, y_r\} \in \mathscr{E}(H_2) \text{ and } x_1 = \dots = x_r$

Prime Factorization w.r.t the Cartesian Product

The Cartesian Product

Prime Factorization w.r.t the Cartesian Product

The Cartesian Product

Prime Factorization w.r.t the Cartesian Product

The Cartesian Product

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \Box H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

The Cartesian Product

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \Box H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \Box H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \Box H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \Box H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \Box H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \Box H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \Box H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Direct Product

 $\{(x_1,y_1),\ldots,(x_r,y_r)\}\in \mathscr{E}(H_1\times H_2)\qquad\Longleftrightarrow\qquad$

The Direct Product

- $\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathscr{E}(H_1 \times H_2) \qquad \Longleftrightarrow \qquad$
 - (i) $\{x_1, \ldots, x_r\} \in \mathscr{E}(H_1)$ and $\exists E \in \mathscr{E}(H_2)$ s.t. $\{y_1, \ldots, y_r\}$ is a family of all elements of *E*, or

Prime Factorization w.r.t the Cartesian Product

The Direct Product

 $\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathscr{E}(H_1 \times H_2) \qquad \Longleftrightarrow \qquad$

- (i) $\{x_1, \ldots, x_r\} \in \mathscr{E}(H_1)$ and $\exists E \in \mathscr{E}(H_2)$ s.t. $\{y_1, \ldots, y_r\}$ is a family of all elements of *E*, or
- (ii) $\{y_1, \ldots, y_r\} \in \mathscr{E}(H_2)$ and $\exists E \in \mathscr{E}(H_1)$ s.t. $\{x_1, \ldots, x_r\}$ is a family of all elements of *E*.

Prime Factorization w.r.t the Cartesian Product

The Direct Product

 $\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathscr{E}(H_1 \times H_2) \qquad \Longleftrightarrow \qquad$

- (i) $\{x_1, \ldots, x_r\} \in \mathscr{E}(H_1)$ and $\exists E \in \mathscr{E}(H_2)$ s.t. $\{y_1, \ldots, y_r\}$ is a family of all elements of *E*, or
- (ii) $\{y_1, \ldots, y_r\} \in \mathscr{E}(H_2)$ and $\exists E \in \mathscr{E}(H_1)$ s.t. $\{x_1, \ldots, x_r\}$ is a family of all elements of *E*.

More formal:

Prime Factorization w.r.t the Cartesian Product

The Direct Product

 $\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathscr{E}(H_1 \times H_2) \qquad \Longleftrightarrow \qquad$

- (i) $\{x_1, \ldots, x_r\} \in \mathscr{E}(H_1)$ and $\exists E \in \mathscr{E}(H_2)$ s.t. $\{y_1, \ldots, y_r\}$ is a family of all elements of *E*, or
- (ii) $\{y_1, \ldots, y_r\} \in \mathscr{E}(H_2)$ and $\exists E \in \mathscr{E}(H_1)$ s.t. $\{x_1, \ldots, x_r\}$ is a family of all elements of *E*.

More formal:

Edge set of the direct product $H_1 \times H_2$ of two hypergraphs H_1, H_2 :
Prime Factorization w.r.t the Cartesian Product

The Direct Product

 $\{(x_1, y_1), \dots, (x_r, y_r)\} \in \mathscr{E}(H_1 \times H_2) \qquad \Longleftrightarrow \qquad$

- (i) $\{x_1, \ldots, x_r\} \in \mathscr{E}(H_1)$ and $\exists E \in \mathscr{E}(H_2)$ s.t. $\{y_1, \ldots, y_r\}$ is a family of all elements of *E*, or
- (ii) $\{y_1, \ldots, y_r\} \in \mathscr{E}(H_2)$ and $\exists E \in \mathscr{E}(H_1)$ s.t. $\{x_1, \ldots, x_r\}$ is a family of all elements of *E*.

More formal:

Edge set of the direct product $H_1 \times H_2$ of two hypergraphs H_1, H_2 :

 $\mathscr{E}(H_1 \times H_2) := \left\{ E \subseteq V(H_1) \times V(H_2) \mid p_1(E) \in \mathscr{E}(H_1), \ p_2(E) \in \mathscr{E}(H_2) \\ \text{and } |E| = \max(|p_1(E)|, |p_2(E)|) \right\}$

Prime Factorization w.r.t the Cartesian Product

The Direct Product

Prime Factorization w.r.t the Cartesian Product

The Direct Product

Prime Factorization w.r.t the Cartesian Product

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \times H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are homomorphisms

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \times H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are homomorphisms

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \times H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are homomorphisms

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \times H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are homomorphisms

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections p_i: V(H₁ × H₂) → V(H_i) for i ∈ {1,2} are homomorphisms

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \times H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are homomorphisms

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \times H_2) \rightarrow V(H_i)$ for $i \in \{1, 2\}$ are homomorphisms

The Strong Product

Edge set of the strong product $H_1 \boxtimes H_2$ of two hypergraphs H_1 and H_2 :

 $\mathscr{E}(H_1 \boxtimes H_2) = \mathscr{E}(H_1 \square H_2) \cup \mathscr{E}(H_1 \times H_2)$

The Strong Product

Edge set of the strong product $H_1 \boxtimes H_2$ of two hypergraphs H_1 and H_2 :

 $\mathscr{E}(H_1 \boxtimes H_2) = \mathscr{E}(H_1 \square H_2) \cup \mathscr{E}(H_1 \times H_2)$

The Strong Product

The strong product is a special case of the direct product:

- $\mathcal{L}H := (V(H), \mathscr{E}(H) \cup \{\{v\} \mid v \in V(H)\}),$
- $\mathbb{N}H := (V(H), \mathscr{E}(H) \setminus \{\{v\} \mid v \in V(H)\})$

The Strong Product

The strong product is a special case of the direct product:

- $\mathcal{L}H := (V(H), \mathscr{E}(H) \cup \{\{v\} \mid v \in V(H)\}),$
- $\mathbb{N}H := (V(H), \mathscr{E}(H) \setminus \{\{v\} \mid v \in V(H)\})$

Prime Factorization w.r.t the Cartesian Product

The Strong Product

The strong product is a special case of the direct product:

- $\mathcal{L}H := (V(H), \mathscr{E}(H) \cup \{\{v\} \mid v \in V(H)\}),$
- $\mathcal{N}H := (V(H), \mathscr{E}(H) \setminus \{\{v\} \mid v \in V(H)\})$

Prime Factorization w.r.t the Cartesian Product

The Strong Product

The strong product is a special case of the direct product:

- $\mathcal{L}H := (V(H), \mathscr{E}(H) \cup \{\{v\} \mid v \in V(H)\}),$
- $\mathcal{N}H := (V(H), \mathscr{E}(H) \setminus \{\{v\} \mid v \in V(H)\})$

 $H_1 \boxtimes H_2 = \mathcal{N}(\mathcal{L}H_1 \times \mathcal{L}H_2)$

for simple hypergraphs H_1 , H_2

Prime Factorization w.r.t the Cartesian Product

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \boxtimes H_2) \to V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

- · Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \boxtimes H_2) \to V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \boxtimes H_2) \to V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \boxtimes H_2) \to V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \boxtimes H_2) \to V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \boxtimes H_2) \to V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \boxtimes H_2) \to V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_i : V(H_1 \boxtimes H_2) \to V(H_i)$ for $i \in \{1, 2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

Prime Factorization w.r.t the Cartesian Product

Prime Factorization w.r.t the Cartesian Product

The Grid-Property

 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one |E| × |F|-grid

Prime Factorization w.r.t the Cartesian Product

The Grid-Property

• 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times |F|$ -grid

 \longrightarrow grid-property

Prime Factorization w.r.t the Cartesian Product

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one |E| × |F|-grid
- $\longrightarrow \text{grid-property}$

Prime Factorization w.r.t the Cartesian Product

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one |E| × |F|-grid
- \longrightarrow grid-property

Prime Factorization w.r.t the Cartesian Product

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one |E| × |F|-grid
- \longrightarrow grid-property

Prime Factorization w.r.t the Cartesian Product

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one |E| × |F|-grid
- \longrightarrow grid-property

Prime Factorization w.r.t the Cartesian Product

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one |E| × |F|-grid
- \longrightarrow grid-property

Prime Factorization w.r.t the Cartesian Product

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one |E| × |F|-grid
- \longrightarrow grid-property

Prime Factorization w.r.t the Cartesian Product

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one |E| × |F|-grid
- \longrightarrow grid-property

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- $E\delta F \iff$
- (i) *E* and *F* are opposite edges of a four-cycle
- (ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times |F|)$ -grid without diagonals containing them.
 - δ^* suffices the grid property

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

• $E\delta F \iff$

(i) *E* and *F* are opposite edges of a four-cycle

(ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times |F|)$ -grid without diagonals containing them.

• δ^* suffices the grid property
The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- $E\delta F \iff$
- (i) E and F are opposite edges of a four-cycle
- (ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times |F|)$ -grid without diagonals containing them.
 - δ^* suffices the grid property

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- $E\delta F \iff$
- (i) E and F are opposite edges of a four-cycle
- (ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times |F|)$ -grid without diagonals containing them.

• δ^* suffices the grid property

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- $E\delta F \iff$
- (i) E and F are opposite edges of a four-cycle
- (ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times |F|)$ -grid without diagonals containing them.
 - δ^* suffices the grid property

Prime Factorization w.r.t the Cartesian Product

The Relation δ

• We have: relation δ^* with

$E\delta^*F \Rightarrow E$ and *F* belong to the same prime factor.

• We want: relation σ with

 $E\sigma F \Leftrightarrow E$ and *F* belong to the same prime factor.

The Relation δ

• We have: relation δ^* with

 $E\delta^*F \Rightarrow E$ and *F* belong to the same prime factor.

• We want: relation σ with

 $E\sigma F \Leftrightarrow E$ and *F* belong to the same prime factor.

Prime Factorization w.r.t the Cartesian Product

The Relation δ

Prime Factorization w.r.t the Cartesian Product

The Relation δ

Prime Factorization w.r.t the Cartesian Product

The Relation δ

Prime Factorization w.r.t the Cartesian Product

The Relation δ

Prime Factorization w.r.t the Cartesian Product

The Relation δ

Prime Factorization w.r.t the Cartesian Product

The Relation δ

Prime Factorization w.r.t the Cartesian Product

The Relation δ

The Convex hull of δ , $\mathscr{C}(\delta)$

Theorem Every connected Hypergraph has a unique prime factorization.

Theorem

The relation corresponding to the unique prime factorization of a connected hypergraph is the convex hull of the δ -relation, $\sigma = \mathscr{C}(\delta)$

Theorem

Every connected Hypergraph has a unique prime factorization.

Theorem

The relation corresponding to the unique prime factorization of a connected hypergraph is the convex hull of the δ -relation, $\sigma = \mathscr{C}(\delta)$

Prime Factorization w.r.t the Cartesian Product

Infinite Hypergraphs

Cartesian product of arbitrarily many hypergraphs:

$$V(\Box_{i\in I}H_i) = \underset{i\in I}{\times} V(H_i)$$
$$\mathscr{E}(\Box_{i\in I}H_i) = \left\{ E \subseteq \underset{i\in I}{\times} V(H_i) \mid p_j(E) \in \mathscr{E}(H_j) \text{ for a } j \in I \text{ and } |p_i(E)| = 1 \text{ for all } i \in I \setminus \{j\} \right\}$$

 Cartesian product of infinitely many connected hypergraphs is not connected

Prime Factorization w.r.t the Cartesian Product

Infinite Hypergraphs

Cartesian product of arbitrarily many hypergraphs:

$$V(\Box_{i\in I}H_i) = \underset{i\in I}{\times} V(H_i)$$
$$\mathscr{E}(\Box_{i\in I}H_i) = \left\{ E \subseteq \underset{i\in I}{\times} V(H_i) \mid p_j(E) \in \mathscr{E}(H_j) \text{ for a } j \in I \text{ and } |p_i(E)| = 1 \text{ for all } i \in I \setminus \{j\} \right\}$$

 Cartesian product of infinitely many connected hypergraphs is not connected

The Weak Cartesian Product

Weak Cartesian product $H = \Box_{i \in I}^{u} H_i$ of hypergraphs $H_i = (V_i, \mathcal{E}_i)$:

The Weak Cartesian Product

Weak Cartesian product $H = \Box_{i \in I}^{u} H_i$ of hypergraphs $H_i = (V_i, \mathcal{E}_i)$:

$$V(H) = \{ v \in \underset{i \in I}{\times} V_i \mid p_i(v) \neq p_i(u) \text{ for at most finitely many } i \in I \}$$

The Weak Cartesian Product

Weak Cartesian product $H = \Box_{i \in I}^{u} H_i$ of hypergraphs $H_i = (V_i, \mathcal{E}_i)$:

$$V(H) = \left\{ v \in \underset{i \in I}{\times} V_i \mid p_i(v) \neq p_i(u) \text{ for at most finitely many } i \in I \right\}$$
$$\mathscr{E}(H) = \left\{ E \subseteq V(H) \mid p_j(E) \in \mathscr{E}_j \text{ for a } j \in I \text{ and } |p_i(E)| = 1 \text{ for all } i \in I \setminus \{j\} \right\}$$

The Weak Cartesian Product

Weak Cartesian product $H = \Box_{i \in I}^{u} H_i$ of hypergraphs $H_i = (V_i, \mathcal{E}_i)$:

$$V(H) = \left\{ v \in \underset{i \in I}{\times} V_i \mid p_i(v) \neq p_i(u) \text{ for at most finitely many } i \in I \right\}$$
$$\mathscr{E}(H) = \left\{ E \subseteq V(H) \mid p_j(E) \in \mathscr{E}_j \text{ for a } j \in I \text{ and } |p_i(E)| = 1 \text{ for all } i \in I \setminus \{j\} \right\}$$

Theorem

Every connected Hypergraph has a unique representation as a weak Cartesian product.

Theorem

The relation corresponding to this representation is the convex hull of the δ -relation, $\sigma = \mathscr{C}(\delta)$

Theorem

Every connected Hypergraph has a unique representation as a weak Cartesian product.

Theorem

The relation corresponding to this representation is the convex hull of the δ -relation, $\sigma=\mathscr{C}(\delta)$

Prime Factorization w.r.t the Cartesian Product

Thanks to Peter Stadler and Marc Hellmuth!

Prime Factorization w.r.t the Cartesian Product

Thanks to Peter Stadler and Marc Hellmuth!

Thank you for your attention!