Hypergraph Products

Lydia Gringmann

Bioinformatik Leipzig
February 16, 2010

Outline

1. Hypergraph Products
> - The Cartesian Product
> - The Direct Product
> - The Strong Product
2. Prime Factorization w.r.t. the Cartesian product

Outline

1. Hypergraph Products

- The Cartesian Product
- The Direct Product - The Strong Product

2. Drime Factorization w.r.t the Cartesian product

Outline

1. Hypergraph Products

- The Cartesian Product
- The Direct Product
- The Strong Product

2. Prime Factorization w.r.t. the Cartesian product

Outline

1. Hypergraph Products

- The Cartesian Product
- The Direct Product
- The Strong Product

2. Prime Factorization w.r.t. the Cartesian product

Outline

1. Hypergraph Products

- The Cartesian Product
- The Direct Product
- The Strong Product

2. Prime Factorization w.r.t. the Cartesian product

Hypergraphs

- A hypergraph is a pair $H=(V, \mathscr{E})$ with vertex set $V \neq \emptyset$ and a family of edges \mathscr{E} where the edges are subsets of V.

- A hypergraph H is simple, if no edge of H is contained in any other edge and each edge consists of at least two elements.

Hypergraphs

- A hypergraph is a pair $H=(V, \mathscr{E})$ with vertex set $V \neq \emptyset$ and a family of edges \mathscr{E} where the edges are subsets of V.

- A hypergraph H is simple, if no edge of H is contained in any other edge and each edge consists of at least two elements.

Hypergraph Products

- For all products $H_{1} \star H_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

1. Restriction to graphs are the common graph products

2. Ascociativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The projections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

Hypergraph Products

- For all products $H_{1} \star H_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

Wish to have:

1. Restriction to graphs are the common graph products
2. Associativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The projections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

Hypergraph Products

- For all products $H_{1} \star H_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

Wish to have:

1. Restriction to graphs are the common graph products
2. Associativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The projections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

Hypergraph Products

- For all products $H_{1} \star H_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

Wish to have:

1. Restriction to graphs are the common graph products
2. Associativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The projections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

Hypergraph Products

- For all products $H_{1} \star H_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

Wish to have:

1. Restriction to graphs are the common graph products
2. Associativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The proiections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

Hypergraph Products

- For all products $H_{1} \star H_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

Wish to have:

1. Restriction to graphs are the common graph products
2. Associativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The projections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

Hypergraph Products

- For all products $H_{1} \star H_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

Wish to have:

1. Restriction to graphs are the common graph products
2. Associativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The projections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

Hypergraph Products

- For all products $H_{1} \star H_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

Wish to have:

1. Restriction to graphs are the common graph products
2. Associativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The projections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

Hypergraph Products

- For all products $H_{1} \star \mathrm{H}_{2}$:

$$
V\left(H_{1} \star H_{2}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)
$$

Wish to have:

1. Restriction to graphs are the common graph products
2. Associativity
3. Commutativity
4. Distributivity w.r.t. the disjoint union
5. Products of simple hypergraphs are simple
6. The projections $p_{i}: V\left(H_{1} \star H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are at least weak homomorphisms
7. Unique prime factorization

The Cartesian Product

Edge set of the Cartesian Product $H_{1} \square H_{2}$ of two hypergraphs H_{1}, H_{2}

$$
\begin{aligned}
\mathscr{E}\left(H_{1} \square H_{2}\right)= & \left\{\{x\} \times F: x \in V\left(H_{1}\right), F \in \mathscr{E}\left(H_{2}\right)\right\} \\
& \cup\left\{E \times\{y\}: E \in \mathscr{E}\left(H_{1}\right), y \in V\left(H_{2}\right)\right\}
\end{aligned}
$$

The Cartesian Product

Edge set of the Cartesian Product $H_{1} \square H_{2}$ of two hypergraphs H_{1}, H_{2}

$$
\begin{aligned}
\mathscr{E}\left(H_{1} \square H_{2}\right)= & \left\{\{x\} \times F: x \in V\left(H_{1}\right), F \in \mathscr{E}\left(H_{2}\right)\right\} \\
& \cup\left\{E \times\{y\}: E \in \mathscr{E}\left(H_{1}\right), y \in V\left(H_{2}\right)\right\}
\end{aligned}
$$

I.e., $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \square H_{2}\right)$

The Cartesian Product

Edge set of the Cartesian Product $H_{1} \square H_{2}$ of two hypergraphs H_{1}, H_{2}

$$
\begin{aligned}
\mathscr{E}\left(H_{1} \square H_{2}\right)= & \left\{\{x\} \times F: x \in V\left(H_{1}\right), F \in \mathscr{E}\left(H_{2}\right)\right\} \\
& \cup\left\{E \times\{y\}: E \in \mathscr{E}\left(H_{1}\right), y \in V\left(H_{2}\right)\right\}
\end{aligned}
$$

I.e., $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \square H_{2}\right)$
(i) $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathscr{E}\left(H_{1}\right)$ and $y_{1}=\ldots=y_{r}$,or

The Cartesian Product

Edge set of the Cartesian Product $H_{1} \square H_{2}$ of two hypergraphs H_{1}, H_{2}

$$
\begin{aligned}
\mathscr{E}\left(H_{1} \square H_{2}\right)= & \left\{\{x\} \times F: x \in V\left(H_{1}\right), F \in \mathscr{E}\left(H_{2}\right)\right\} \\
& \cup\left\{E \times\{y\}: E \in \mathscr{E}\left(H_{1}\right), y \in V\left(H_{2}\right)\right\}
\end{aligned}
$$

I.e., $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \square H_{2}\right)$
(i) $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathscr{E}\left(H_{1}\right)$ and $y_{1}=\ldots=y_{r}$,or
(ii) $\left\{y_{1}, \ldots, y_{r}\right\} \in \mathscr{E}\left(H_{2}\right)$ and $x_{1}=\ldots=x_{r}$

The Cartesian Product

The Cartesian Product

The Cartesian Product

Properties of the Cartesian product:

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \square H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

Properties of the Cartesian product:

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \square H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak
homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

Properties of the Cartesian product:

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hynergraphs are simple
- The projections $p_{i}: V\left(H_{1} \square H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

Properties of the Cartesian product:

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \square H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

Properties of the Cartesian product:

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \square H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

Properties of the Cartesian product:

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \square H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

Properties of the Cartesian product:

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \square H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Cartesian Product

Properties of the Cartesian product:

- Restriction to graphs is the Cartesian graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \square H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The Cartesian product of hypergraphs is connected if and only if the factors are connected

The Direct Product

$$
\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \times H_{2}\right) \quad \Longleftrightarrow
$$

The Direct Product

$\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \times H_{2}\right) \Longleftrightarrow$
(i) $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathscr{E}\left(H_{1}\right)$ and $\exists E \in \mathscr{E}\left(H_{2}\right)$ s.t. $\left\{y_{1}, \ldots y_{r}\right\}$ is a family of all elements of E, or

The Direct Product

$\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \times H_{2}\right)$

(i) $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathscr{E}\left(H_{1}\right)$ and $\exists E \in \mathscr{E}\left(H_{2}\right)$ s.t. $\left\{y_{1}, \ldots y_{r}\right\}$ is a family of all elements of E, or
(ii) $\left\{y_{1}, \ldots, y_{r}\right\} \in \mathscr{E}\left(H_{2}\right)$ and $\exists E \in \mathscr{E}\left(H_{1}\right)$ s.t. $\left\{x_{1}, \ldots x_{r}\right\}$ is a family of all elements of E.

The Direct Product

$\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \times H_{2}\right)$ \Longleftrightarrow
(i) $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathscr{E}\left(H_{1}\right)$ and $\exists E \in \mathscr{E}\left(H_{2}\right)$ s.t. $\left\{y_{1}, \ldots y_{r}\right\}$ is a family of all elements of E, or
(ii) $\left\{y_{1}, \ldots, y_{r}\right\} \in \mathscr{E}\left(H_{2}\right)$ and $\exists E \in \mathscr{E}\left(H_{1}\right)$ s.t. $\left\{x_{1}, \ldots x_{r}\right\}$ is a family of all elements of E.

More formal:

The Direct Product

$\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \times H_{2}\right)$

(i) $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathscr{E}\left(H_{1}\right)$ and $\exists E \in \mathscr{E}\left(H_{2}\right)$ s.t. $\left\{y_{1}, \ldots y_{r}\right\}$ is a family of all elements of E, or
(ii) $\left\{y_{1}, \ldots, y_{r}\right\} \in \mathscr{E}\left(H_{2}\right)$ and $\exists E \in \mathscr{E}\left(H_{1}\right)$ s.t. $\left\{x_{1}, \ldots x_{r}\right\}$ is a family of all elements of E.

More formal:
Edge set of the direct product $H_{1} \times H_{2}$ of two hypergraphs H_{1}, H_{2} :

The Direct Product

$\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\} \in \mathscr{E}\left(H_{1} \times H_{2}\right)$

(i) $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathscr{E}\left(H_{1}\right)$ and $\exists E \in \mathscr{E}\left(H_{2}\right)$ s.t. $\left\{y_{1}, \ldots y_{r}\right\}$ is a family of all elements of E, or
(ii) $\left\{y_{1}, \ldots, y_{r}\right\} \in \mathscr{E}\left(H_{2}\right)$ and $\exists E \in \mathscr{E}\left(H_{1}\right)$ s.t. $\left\{x_{1}, \ldots x_{r}\right\}$ is a family of all elements of E.

More formal:
Edge set of the direct product $H_{1} \times H_{2}$ of two hypergraphs H_{1}, H_{2} :

$$
\begin{aligned}
& \mathscr{E}\left(H_{1} \times H_{2}\right):=\left\{E \subseteq V\left(H_{1}\right) \times V\left(H_{2}\right) \mid p_{1}(E) \in \mathscr{E}\left(H_{1}\right), p_{2}(E) \in \mathscr{E}\left(H_{2}\right)\right. \\
&\text { and } \left.|E|=\max \left(\left|p_{1}(E)\right|,\left|p_{2}(E)\right|\right)\right\}
\end{aligned}
$$

The Direct Product

The Direct Product

Properties of the direct product:

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V /\left(H_{i} \times H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are homomorphisms

Properties of the direct product:

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \times H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are homomorphisms

Properties of the direct product:

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \times H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are homomorphisms

Properties of the direct product:

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \times H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are homomorphisms

Properties of the direct product:

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \times H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are homomorphisms

Properties of the direct product:

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \times H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are homomorphisms

Properties of the direct product:

- Restriction to graphs is the direct graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \times H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are homomorphisms

The Strong Product

Edge set of the strong product $H_{1} \boxtimes H_{2}$ of two hypergraphs H_{1} and H_{2} :

$$
\mathscr{E}\left(H_{1} \boxtimes H_{2}\right)=\mathscr{E}\left(H_{1} \square H_{2}\right) \cup \mathscr{E}\left(H_{1} \times H_{2}\right)
$$

The Strong Product

Edge set of the strong product $H_{1} \boxtimes H_{2}$ of two hypergraphs H_{1} and H_{2} :

$$
\mathscr{E}\left(H_{1} \boxtimes H_{2}\right)=\mathscr{E}\left(H_{1} \square H_{2}\right) \cup \mathscr{E}\left(H_{1} \times H_{2}\right)
$$

The Strong Product

The strong product is a special case of the direct product:

$$
\begin{aligned}
& \text { - } \mathcal{L} H:=(V(H), \mathscr{E}(H) \cup\{\{v\} \mid v \in V(H)\}), \\
& \text { - } \mathcal{N H}:=(V(H), \mathscr{E}(H) \backslash\{\{v\} \mid v \in V(H)\})
\end{aligned}
$$

The Strong Product

The strong product is a special case of the direct product:

- $\mathfrak{L H}:=(V(H), \mathscr{E}(H) \cup\{\{v\} \mid v \in V(H)\})$,
- $\mathcal{N H}:=(V(H), \mathscr{E}(H) \backslash\{\{v\} \mid v \in V(H)\})$

The Strong Product

The strong product is a special case of the direct product:

- $\mathcal{L} H:=(V(H), \mathscr{E}(H) \cup\{\{v\} \mid v \in V(H)\})$,
- $\mathcal{N} H:=(V(H), \mathscr{E}(H) \backslash\{\{v\} \mid v \in V(H)\})$

The Strong Product

The strong product is a special case of the direct product:

- $\mathcal{L} H:=(V(H), \mathscr{E}(H) \cup\{\{v\} \mid v \in V(H)\})$,
- $\mathcal{N} H:=(V(H), \mathscr{E}(H) \backslash\{\{v\} \mid v \in V(H)\})$

$$
H_{1} \boxtimes H_{2}=\mathcal{N}\left(\mathcal{L} H_{1} \times \mathcal{L} H_{2}\right)
$$

for simple hypergraphs H_{1}, H_{2}

Properties of the strong product:

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \boxtimes H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Properties of the strong product:

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \boxtimes H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Properties of the strong product:

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \boxtimes H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Properties of the strong product:

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \boxtimes H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Properties of the strong product:

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \boxtimes H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Properties of the strong product:

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \boxtimes H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Properties of the strong product:

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \boxtimes H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Properties of the strong product:

- Restriction to graphs is the strong graph product
- Associativity
- Commutativity
- Distributivity w.r.t. the disjoint union
- Products of simple hypergraphs are simple
- The projections $p_{i}: V\left(H_{1} \boxtimes H_{2}\right) \rightarrow V\left(H_{i}\right)$ for $i \in\{1,2\}$ are weak homomorphisms
- The strong product of hypergraphs is connected if and only if the factors are connected

Prime Factorization w.r.t the Cartesian Product

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid
\longrightarrow grid-property

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid
\longrightarrow grid-property

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid
\longrightarrow grid-property

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid
\longrightarrow grid-property

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid
\longrightarrow grid-property

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid
\longrightarrow grid-property

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid
\longrightarrow grid-property

The Grid-Property

- 2 incident edges E, F of a Cartesian product belonging to two different factors span exactly one $|E| \times|F|$-grid
\longrightarrow grid-property

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- $E \delta F \Longleftrightarrow$
(i) E and F are opposite edges of a four-cycle
(ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times|F|)$-grid without diagonals containing them.
- δ^{*} suffices the grid property

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- $E \delta F \Longleftrightarrow$
(i) E and F are opposite edges of a four-cycle
(ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times|F|)$-grid without diagonals containing them.
- δ^{*} suffices the grid property

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- E δF
(i) E and F are opposite edges of a four-cycle
(ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times|F|)$-grid without diagonals containing them.
- δ^{*} suffices the grid property

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- E δF
(i) E and F are opposite edges of a four-cycle
(ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times|F|)$-grid without diagonals containing them.

The Relation δ

"'starting"'-relation δ on $\mathscr{E}(H)$:

- E δF
(i) E and F are opposite edges of a four-cycle
(ii) $E \cap F \neq \emptyset$ and $\nexists(|E| \times|F|)$-grid without diagonals containing them.
- δ^{*} suffices the grid property

The Relation δ

- We have: relation δ^{*} with
$E \delta^{*} F \Rightarrow E$ and F belong to the same prime factor.
- We want: relation σ with
$E \sigma F \Leftrightarrow E$ and F belong to the same prime factor.

The Relation δ

- We have: relation δ^{*} with

$$
E \delta^{*} F \Rightarrow E \text { and } F \text { belong to the same prime factor. }
$$

- We want: relation σ with
$E \sigma F \Leftrightarrow E$ and F belong to the same prime factor.

The Relation δ

Equivalence classes of δ^{*} :

The Relation δ

Equivalence classes of δ^{*} :

The Relation δ

Equivalence classes of δ^{*} :

The Relation δ

Equivalence classes of δ^{*} :

The Relation δ

Equivalence classes of δ^{*} :

The Relation δ

Equivalence classes of δ^{*} :

The Relation δ

Equivalence classes of δ^{*} :

The Convex hull of $\delta, \mathscr{C}(\delta)$

i.e. the smallest convex equivalence relation containing δ :

The Convex hull of $\delta, \mathscr{C}(\delta)$

i.e. the smallest convex equivalence relation containing δ :

The Convex hull of $\delta, \mathscr{C}(\delta)$

i.e. the smallest convex equivalence relation containing δ :

The Convex hull of $\delta, \mathscr{C}(\delta)$

i.e. the smallest convex equivalence relation containing δ :

The Convex hull of $\delta, \mathscr{C}(\delta)$

i.e. the smallest convex equivalence relation containing δ :

Theorem
Every connected Hypergraph has a unique prime factorization.

Theorem
The relation corresponding to the unique prime factorization of a connected hypergraph is the convex hull of the δ-relation, $\sigma=\mathscr{C}(\delta)$

Theorem
Every connected Hypergraph has a unique prime factorization.

Theorem
The relation corresponding to the unique prime factorization of a connected hypergraph is the convex hull of the δ-relation, $\sigma=\mathscr{C}(\delta)$

Infinite Hypergraphs

Cartesian product of arbitrarily many hypergraphs:

$$
\begin{aligned}
V\left(\square_{i \in I} H_{i}\right)= & \underset{i \in I}{\times} V\left(H_{i}\right) \\
\mathscr{E}\left(\square_{i \in I} H_{i}\right)= & \left\{E \subseteq \underset{i \in I}{\times} V\left(H_{i}\right) \mid p_{j}(E) \in \mathscr{E}\left(H_{j}\right) \text { for a } j \in I\right. \\
& \text { and } \left.\left|p_{i}(E)\right|=1 \text { for all } i \in I \backslash\{j\}\right\}
\end{aligned}
$$

Infinite Hypergraphs

Cartesian product of arbitrarily many hypergraphs:

$$
\begin{aligned}
V\left(\square_{i \in I} H_{i}\right)= & \underset{i \in I}{\times} V\left(H_{i}\right) \\
\mathscr{E}\left(\square_{i \in I} H_{i}\right)= & \left\{E \subseteq \underset{i \in I}{\times} V\left(H_{i}\right) \mid p_{j}(E) \in \mathscr{E}\left(H_{j}\right) \text { for a } j \in I\right. \\
& \text { and } \left.\left|p_{i}(E)\right|=1 \text { for all } i \in I \backslash\{j\}\right\}
\end{aligned}
$$

- Cartesian product of infinitely many connected hypergraphs is not connected

The Weak Cartesian Product

Weak Cartesian product $H=\square_{i \in 1}^{u} H_{i}$ of hypergraphs $H_{i}=\left(V_{i}, \mathscr{E}_{i}\right)$:

- $H=\square_{i \in I}^{U} H_{i}$ is the connected component of $\square_{i \in I} H_{i}$ containing u

The Weak Cartesian Product

Weak Cartesian product $H=\square_{i \in 1}^{u} H_{i}$ of hypergraphs $H_{i}=\left(V_{i}, \mathscr{E}_{i}\right)$:
$V(H)=\left\{v \in \underset{i \in I}{\times} V_{i} \mid p_{i}(v) \neq p_{i}(u)\right.$ for at most finitely many $\left.i \in I\right\}$

- $H=\square_{i \in 1}^{u} H_{i}$ is the connected component of $\square_{i \in 1} H_{i}$ containing u

The Weak Cartesian Product

Weak Cartesian product $H=\square_{i \in 1}^{u} H_{i}$ of hypergraphs $H_{i}=\left(V_{i}, \mathscr{E}_{i}\right)$:
$V(H)=\left\{v \in \underset{i \in I}{\times} V_{i} \mid p_{i}(v) \neq p_{i}(u)\right.$ for at most finitely many $\left.i \in I\right\}$
$\mathscr{E}(H)=\left\{E \subseteq V(H) \mid p_{j}(E) \in \mathscr{E}_{j}\right.$ for a $j \in I$ and $\left|p_{i}(E)\right|=1$ for all $\left.i \in I \backslash\{j\}\right\}$

The Weak Cartesian Product

Weak Cartesian product $H=\square_{i \in 1}^{u} H_{i}$ of hypergraphs $H_{i}=\left(V_{i}, \mathscr{E}_{i}\right)$:
$V(H)=\left\{v \in \underset{i \in I}{\times} V_{i} \mid p_{i}(v) \neq p_{i}(u)\right.$ for at most finitely many $\left.i \in I\right\}$
$\mathscr{E}(H)=\left\{E \subseteq V(H) \mid p_{j}(E) \in \mathscr{E}_{j}\right.$ for a $j \in I$ and $\left|p_{i}(E)\right|=1$ for all $\left.i \in I \backslash\{j\}\right\}$

- $H=\square_{i \in I}^{\mu} H_{i}$ is the connected component of $\square_{i \in I} H_{i}$ containing u

Theorem
 Every connected Hypergraph has a unique representation as a weak Cartesian product.

Theorem
The relation corresponding to this representation is the convex hull of the δ-relation, $\sigma=\mathscr{C}(\delta)$

Theorem

Every connected Hypergraph has a unique representation as a weak Cartesian product.

Theorem
The relation corresponding to this representation is the convex hull of the δ-relation, $\sigma=\mathscr{C}(\delta)$

Thanks to Peter Stadler and Marc Hellmuth!

Thanks to Peter Stadler and Marc Hellmuth!

Thank you for your attention!

