

Local Approach

Approximate Products

(Approximate) Graph Products

Marc Hellmuth

Max Planck Institute for Mathematics in the Sciences Leipzig, Germany

Bioinformatics Group Science Department of Computer Science, and Interdisciplinary Center for Bioinformatics University Leipzig, Germany

Bled - 2010

TOOLS 000 000 000 Local Approach

Approximate Products

Basics

Basics	TOOLS	Local Approach	Approximate Products
000	000	000	0000000
00000	000		
00000	00		

A graph is a pair G = (V, E) with vertex set $V \neq \emptyset$ and edge set *E*.

here: simple, connected, undirected graphs

.

TOOLS 000 Local Approach

Approximate Products

Strong and Cartesian Product

The vertex set of the Cartesian product (\Box) and strong product (\boxtimes) is defined as follows:

$$V(G_1 \square G_2) = V(G_1 \boxtimes G_2) = \{(v_1, v_2) \mid v_1 \in V(G_1), v_2 \in V(G_2)\}$$

TOOLS 000 Local Approach

Approximate Products

Cartesian Product

Two vertices (x_1, x_2) , (y_1, y_2) are adjacent in $G_1 \square G_2$ if

1.
$$(x_1, y_1) \in E(G_1)$$
 and $x_2 = y_2$ or if

2.
$$(x_2, y_2) \in E(G_2)$$
 and $x_1 = y_1$.

Local Approach

Approximate Products

Strong Product

Two vertices (x_1, x_2) , (y_1, y_2) are adjacent in $G_1 \boxtimes G_2$ if

1. $(x_1, y_1) \in E(G_1)$ and $x_2 = y_2$ or if

2.
$$(x_2, y_2) \in E(G_2)$$
 and $x_1 = y_1$ or if

3.
$$(x_1, y_1) \in E(G_1)$$
 and $(x_2, y_2) \in E(G_2)$.

TOOL 000 000 Local Approach

Approximate Products

Decomposition

Definition G is prime, if $\nexists A * B = G$ with A, B nontrivial, i.e. |V(A)|, |V(B)| > 1. $(* = \Box, \boxtimes)$

Aim: Prime factor decomposition (PFD) of given G.

Approximate Products

Prime Factor Decomposition

Theorem (Sabidussi (1959))

PFD of every connected graph w.r.t. the Cartesian product is unique.

Theorem (Dörfler and Imrich (1969), McKenzie (1971))

PFD of every connected graph w.r.t. the strong product is unique.

Theorem (Imrich and Peterin (2007))

PFD of every connected graph w.r.t. the Cartesian product can be computed in O(|E(G)|) time.

Theorem (Hammack and Imrich (2009))

PFD of every connected graph w.r.t. the strong product can be computed in $O(|E(G)|\Delta^2)$ time.

Approximate Products

Decomposition of Cartesian Product

Approximate Products

Decomposition of Cartesian Product

Copies of Factors in a Product are called layer or fiber.

MAIN IDEA: Decomposition strong product

Find a spanning subgraph with special properties in *G*, the so called cartesian skeleton.

The decomposition of the cartesian skeleton w.r.t. cartesian product together with some additional operations leads to the possible factors of the strong product.

Approximate Products

MAIN IDEA: Decomposition strong product

Approximate Products

MAIN IDEA: Decomposition strong product

Approximate Products

MAIN IDEA: Decomposition strong product

Two isomorphic product graphs.

Local Approach

Approximate Products

Motivation Problem:

Often real data, that is represented by graphs, is disturbed and thus the corresponding "product graph" is disturbed.

Local Approach

Approximate Products

Motivation

Local Approach

Approximate Products

Problem:

Often real data, that is represented by graphs, is disturbed and thus the corresponding "product graph" is disturbed.

- · How can we recognize original factors of disturbed products?
- How can we recognize at least some parts of a disturbed product as a product?

Local Approach

Approximate Products

What if prime?

Aim: Get a product of graphs that is "near" a given prime graph (approximate products).

Remark: Induced neighborhoods in products are products.

Local Approach

Approximate Products

IDEA: Approximate Products

Local Approach

Approximate Products

IDEA: Approximate Products

Local Approach

Approximate Products

IDEA: Approximate Products

TOOLS 000 000 000 Local Approach

Approximate Products

Tools

1. S=1-condition

- 2. Backbone $\mathbb{B}(G)$
- 3. Color-Continuation

Approximate Products

Thinness (S=1-condition)

Let G be a graph and $v, w \in V(G)$.

- *v*, *w* are in Relation S if N[v] = N[w]
- We call a graph S-thin if no two vertices v, w are in Relation S.

If G is S-thin the Cartesian edges are uniquely determined

Approximate Products

Thinness (S=1-condition)

WHAT ARE THE FIBERS ?

Approximate Products

Thinness (S=1-condition)

Local Approach

Approximate Products

The Backbone $\mathbb{B}(G)$

$$\mathbb{B}(G) := \{ v \in V(G) \mid |S_v(v)| = 1 \}$$
$$= \{ v \in V(G) \mid N[v] \text{ is strictly maximal in } G \}$$

Theorem $\mathbb{B}(G)$ is a connected dominating set.

Local Approach

Approximate Products

The Backbone $\mathbb{B}(G)$

Figure: Examples

Local Approach

Approximate Products

The Backbone $\mathbb{B}(G)$

For a local covering we consider neighborhoods of vertices of $\mathbb{B}(G)$ only.

Why?

Theorem

All Cartesian edges that satisfy the S=1-condition in an arbitrary induced neighborhood also satisfy the S=1-condition in the induced neighborhood of a vertex of the backbone $\mathbb{B}(G)$.

Local Approach

Approximate Products

Color-Continuation

Color-continuation from H_1 to H_2 :

Local Approach

Approximate Products

Color-Continuation

Color-continuation from H_1 to H_2 :

Local Approach

Approximate Products

Color-Continuation

Color-continuation from H_1 to H_2 :

Local Approach

Approximate Products

Color-Continuation

Color-continuation from H_1 to H_2 :

 \simeq

Approximate Products

Example: Color-Continuation fails

TOOLS 000 000 000 Local Approach

Approximate Products

Local Approach

Local Approach

Approximate Products

Used Subproducts

1-neighborhood $\langle N[(x,y)] \rangle = \langle N[x] \rangle \boxtimes \langle N[y] \rangle$

Ihs.: The edge-neighborhood $\langle N[(a,y)] \cup N[(b,y)] \rangle$ **rhs.:** The N^* -neighborhood $N^*_{(ay),(by)} = \langle \cup_{z \in N[(ay)] \cap N[by]} N[z] \rangle$

Local Approach

INPUT: thin graph G;

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph G; Compute $\mathbb{B}_{BFS}(G)$;

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph *G*; Compute $\mathbb{B}_{BFS}(G)$; Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$);

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph *G*; Compute $\mathbb{B}_{BFS}(G)$; Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$);

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph *G*; Compute $\mathbb{B}_{BFS}(G)$; Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$); Take next $y \in \mathbb{B}_{BFS}(G)$;

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph *G*; Compute $\mathbb{B}_{BFS}(G)$; Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$); Take next $y \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[y] \rangle$);

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph G;

Compute $\mathbb{B}_{BFS}(G)$;

Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$);

Take next $y \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[y] \rangle$);

IF (color-conti works OR $\langle N[x] \rangle$ and $\langle N[y] \rangle$ are thin) THEN $\sqrt{}$;

000

Local Approach

Approximate Products

Local Approach

INPUT: thin graph G;

Compute $\mathbb{B}_{BFS}(G)$;

Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$);

Take next $y \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[y] \rangle$);

IF (color-conti works OR $\langle N[x] \rangle$ and $\langle N[y] \rangle$ are thin) THEN $\sqrt{}$;

ELSE IF ((x, y) is Cartesian) THEN PFD($\langle N[x] \cup N[y] \rangle$);

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph G;

Compute $\mathbb{B}_{BFS}(G)$;

Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$);

Take next $y \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[y] \rangle$);

IF (color-conti works OR $\langle N[x] \rangle$ and $\langle N[y] \rangle$ are thin) THEN $\sqrt{}$;

ELSE IF ((x, y) is Cartesian) THEN PFD($\langle N[x] \cup N[y] \rangle$);

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph *G*; Compute $\mathbb{B}_{BFS}(G)$; Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$); Take next $y \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[y] \rangle$); **IF** (color-conti works OR

 $\langle N[x] \rangle$ and $\langle N[y] \rangle$ are thin) **THEN** $\sqrt{}$;

ELSE IF ((x, y) is Cartesian) THEN PFD($\langle N[x] \cup N[y] \rangle$);

ELSE PFD(
$$\langle N_{x,y}^* \rangle$$
);

TOOL:

Local Approach

Approximate Products

Local Approach

INPUT: thin graph G;

Compute $\mathbb{B}_{BFS}(G)$;

Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$);

Take next $y \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[y] \rangle$);

IF (color-conti works OR $\langle N[x] \rangle$ and $\langle N[y] \rangle$ are thin) THEN $\sqrt{;}$

ELSE IF ((x,y) is Cartesian) THEN PFD($\langle N[x] \cup N[y] \rangle$);

ELSE PFD($\langle N_{x,y}^* \rangle$);

000 000 Local Approach

Approximate Products

Local Approach

INPUT: thin graph *G*; Compute $\mathbb{B}_{BFS}(G)$; Take first $x \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[x] \rangle$); Take next $y \in \mathbb{B}_{BFS}(G)$; PFD($\langle N[y] \rangle$); **IF** (color-conti works OR $\langle N[x] \rangle$ and $\langle N[y] \rangle$ are thin) **THEN** $\sqrt{}$; **ELSE IF** ((*x*, *y*) is Cartesian) **THEN**

 $\mathsf{PFD}(\langle N[x] \cup N[y] \rangle);$

ELSE PFD(
$$\langle N_{x,y}^* \rangle$$
);

••••

OUTPUT: Product-colored graph G and Primefactors of *G*;

TOOL:

Local Approach

Approximate Products

Local Approach

Theorem

The Local Approach determines the prime factors and the corresponding product coloring of a given graph G = (V, E) with bounded maximum degree in $O(|V|\Delta^6)$ time.

TOOLS 000 000 000 Local Approach

Approximate Products

Approximate Products - Results

Approximate Products

Approximate Products

Approximate Products

Approximate Products

Approximate Products

Approximate Products

Basics	TOOLS	Local Approach	Approximate Products
0000	000	000	000000
000000	000		
000000	00		

How much perturbation is allowed s.t. we could recover both original factors?

Pertubation vs SuccessExactALLFactors

asics 000 00000 00000	TOOLS 000 000 00	Local Approach 000	Approximate Products

Ba

Pertubation vs PrimeN

TOOLS 000 000 00 Local Approach

Approximate Products

primeN vs SuccessExactALLFactors

Approximate Products

Maximal Factorized Subgraph H

Ratio of $H = \frac{1}{2} \left(\frac{|V(H)|}{|V(G)|} + \frac{|E(H)|}{|E(G)|} \right) = \frac{1}{2} \left(\frac{19}{35} + \frac{51}{106} \right) = \frac{1}{2} \left(0.54 + 0.48 \right) = 0.51$

TOOLS 000 000 00 Local Approach

Approximate Products

Local Approach

Approximate Products

Summary

- New Local Approach for PFD that runs in $O(|V|\Delta^6)$ time.
- Suitable Results for Approximate Graph Products.

Outlook

- What if the subproducts are approximate products?
- Approximate products w.r.t. other products (Cartesian, direct, ...)
- Generalization (factorization of directed graphs, weighted graphs, hypergraphs) and Recognition of approximate graph products of those graphs.
- Preprocessing step via statistical approaches (degree distributions, shortest paths distributions, ...) that gives us (at least) necessary conditions to decide that a prime graph is either very similar to a product graph or not

Basics
0000
000000
000000

Local Approach

Approximate Products

Download

http://www.bioinf.uni-leipzig.de/~marc/download.html

TOOLS 000 000 00 Local Approach

Approximate Products

Thanks to Peter F. Stadler, Wilfried Imrich, Werner Klöckl and Lydia Gringmann!

Thank you for your attention!