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A graph is a pair G = (V ,E) with vertex set V 6= /0 and edge set E .

here: simple, connected, undirected graphs

0

1 2

34



Basics TOOLS Local Approach Approximate Products

Strong and Cartesian Product

The vertex set of the Cartesian product (�) and strong product (⊠) is
defined as follows:

V (G1�G2) = V (G1 ⊠G2) = {(v1,v2) | v1 ∈ V (G1),v2 ∈ V (G2)}

.
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Cartesian Product

Two vertices (x1,x2), (y1,y2) are adjacent in G1�G2 if

1. (x1,y1) ∈ E(G1) and x2 = y2 or if

2. (x2,y2) ∈ E(G2) and x1 = y1.
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Strong Product

Two vertices (x1,x2), (y1,y2) are adjacent in G1 ⊠G2 if

1. (x1,y1) ∈ E(G1) and x2 = y2 or if

2. (x2,y2) ∈ E(G2) and x1 = y1 or if

3. (x1,y1) ∈ E(G1) and (x2,y2) ∈ E(G2).
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Decomposition

Definition
G is prime, if ∄A∗B = G with A,B nontrivial, i.e. |V (A)|, |V (B)| > 1.
(∗ = �,⊠)

Aim: Prime factor decomposition (PFD) of given G.
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Prime Factor Decomposition

Theorem (Sabidussi (1959))
PFD of every connected graph w.r.t. the Cartesian product is unique.

Theorem (Dörfler and Imrich (1969), McKenzie (1971))
PFD of every connected graph w.r.t. the strong product is unique.

Theorem (Imrich and Peterin (2007))
PFD of every connected graph w.r.t. the Cartesian product can be
computed in O(|E(G)|) time.

Theorem (Hammack and Imrich (2009))
PFD of every connected graph w.r.t. the strong product can be computed
in O(|E(G)|∆2) time.
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Decomposition of Cartesian Product
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Decomposition of Cartesian Product

Copies of Factors in a Product are called layer or fiber.
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MAIN IDEA: Decomposition strong product

Find a spanning subgraph with special properties in G, the so called
cartesian skeleton.

The decomposition of the cartesian skeleton w.r.t. cartesian product
together with some additional operations leads to the possible factors of
the strong product.
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MAIN IDEA: Decomposition strong product
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MAIN IDEA: Decomposition strong product
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Motivation

Two isomorphic product graphs.
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Motivation
Problem:

Often real data, that is represented by graphs, is disturbed

and thus the corresponding "product graph" is disturbed.
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Problem:

Often real data, that is represented by graphs, is disturbed
and thus the corresponding "product graph" is disturbed.

• How can we recognize original factors of disturbed products?

• How can we recognize at least some parts of a disturbed
product as a product?
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What if prime?

Aim: Get a product of graphs that is "near" a given prime graph
(approximate products).

Remark: Induced neighborhoods in products are products.

x

y xy
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IDEA: Approximate Products
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IDEA: Approximate Products
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IDEA: Approximate Products
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Tools

1. S=1-condition

2. Backbone B(G)

3. Color-Continuation
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Thinness (S=1-condition)

Let G be a graph and v ,w ∈ V (G).
• v ,w are in Relation S if N[v] = N[w]
• We call a graph S-thin if no two vertices v ,w are in Relation S.

If G is S-thin the Cartesian edges are uniquely determined
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Thinness (S=1-condition)
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Thinness (S=1-condition)
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The Backbone B(G)

B(G) := {v ∈ V (G) | |Sv (v)| = 1}
= {v ∈ V (G) | N[v ] is strictly maximal in G}

Theorem
B(G) is a connected dominating set.
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The Backbone B(G)

Figure: Examples
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The Backbone B(G)

For a local covering we consider neighborhoods of vertices of B(G) only.

Why?

Theorem
All Cartesian edges that satisfy the S=1-condition in an arbitrary
induced neighborhood also satisfy the S=1-condition in the induced
neighborhood of a vertex of the backbone B(G).
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Color-Continuation

Color-continuation from H1 to H2:

For all newly colored edges with color c in H2

(S=1-condition Cartesian edges in H2),
we have to find a representative edge that
satisfies the S=1-condition in H1 and was already colored in H1.

x y
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Color-Continuation

Color-continuation from H1 to H2:

For all newly colored edges with color c in H2

(S=1-condition Cartesian edges in H2),
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Example: Color-Continuation fails
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Local Approach
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Used Subproducts
x

y xy

1-neighborhood 〈N[(x ,y)]〉 = 〈N[x]〉⊠ 〈N[y ]〉

a b

y ay by

a b

y ay by

lhs.: The edge-neighborhood 〈N[(a,y)]∪N[(b,y)]〉
rhs.: The N∗-neighborhood N∗

(ay),(by) = 〈∪z∈N[(ay)]∩N[by ]N[z]〉
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Local Approach

G INPUT: thin graph G;
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Compute BBFS(G);
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Local Approach

G, B(G) INPUT: thin graph G;

Compute BBFS(G);

Take first x ∈ BBFS(G); PFD(〈N[x]〉);
Take next y ∈ BBFS(G);
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Local Approach

G, B(G) INPUT: thin graph G;

Compute BBFS(G);

Take first x ∈ BBFS(G); PFD(〈N[x]〉);
Take next y ∈ BBFS(G); PFD(〈N[y ]〉);
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Local Approach

G, B(G) INPUT: thin graph G;

Compute BBFS(G);

Take first x ∈ BBFS(G); PFD(〈N[x]〉);
Take next y ∈ BBFS(G); PFD(〈N[y ]〉);
IF (color-conti works OR

〈N[x]〉 and 〈N[y ]〉 are thin) THEN
√

;
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Local Approach

G, B(G) INPUT: thin graph G;
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IF (color-conti works OR
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√
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ELSE IF ((x ,y) is Cartesian) THEN

PFD(〈N[x]∪N[y ]〉);
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Local Approach

INPUT: thin graph G;

Compute BBFS(G);

Take first x ∈ BBFS(G); PFD(〈N[x]〉);
Take next y ∈ BBFS(G); PFD(〈N[y ]〉);
IF (color-conti works OR
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Local Approach

G, B(G) INPUT: thin graph G;

Compute BBFS(G);

Take first x ∈ BBFS(G); PFD(〈N[x]〉);
Take next y ∈ BBFS(G); PFD(〈N[y ]〉);
IF (color-conti works OR

〈N[x]〉 and 〈N[y ]〉 are thin) THEN
√

;

ELSE IF ((x ,y) is Cartesian) THEN

PFD(〈N[x]∪N[y ]〉);
ELSE PFD( 〈N∗

x ,y 〉);

....

OUTPUT: Product-colored graph G and
Primefactors of G;
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Local Approach

Theorem
The Local Approach determines the prime factors and the corresponding
product coloring of a given graph G = (V ,E) with bounded maximum
degree in O(|V |∆6) time.
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Approximate Products - Results
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Test DataSet
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Approximate Products - Approach
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How much perturbation is allowed s.t. we could recover both original factors?
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Maximal Factorized Subgraph H

Ratio of H = 1
2

(

|V (H)|
|V (G)| +

|E(H)|
|E(G)|

)

= 1
2

(

19
35 + 51

106

)

= 1
2 (0.54+0.48) = 0.51
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Summary

• New Local Approach for PFD that runs in O(|V |∆6) time.

• Suitable Results for Approximate Graph Products.

Outlook

• What if the subproducts are approximate products?

• Approximate products w.r.t. other products (Cartesian, direct, ...)

• Generalization (factorization of directed graphs, weighted graphs,
hypergraphs) and Recognition of approximate graph products of
those graphs.

• Preprocessing step via statistical approaches (degree distributions,
shortest paths distributions, ...) that gives us (at least) necessary
conditions to decide that a prime graph is either very similar to a
product graph or not
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Download

http://www.bioinf.uni-leipzig.de/˜marc/download.htm l
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Thanks to Peter F. Stadler, Wilfried Imrich,
Werner Klöckl and Lydia Gringmann!

Thank you for your attention!
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