(Approximate) Graph Products

Marc Hellmuth

Max Planck Institute for Mathematics in the Sciences
Leipzig, Germany
Bioinformatics Group
Science Department of Computer Science, and Interdisciplinary Center for
Bioinformatics
University Leipzig, Germany

$$
\text { Bled - } 2010
$$

Basics

A graph is a pair $G=(V, E)$ with vertex set $V \neq \emptyset$ and edge set E. here: simple, connected, undirected graphs

Strong and Cartesian Product

The vertex set of the Cartesian product (\square) and strong product (\boxtimes) is defined as follows:

$$
V\left(G_{1} \square G_{2}\right)=V\left(G_{1} \boxtimes G_{2}\right)=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in V\left(G_{1}\right), v_{2} \in V\left(G_{2}\right)\right\}
$$

Cartesian Product

Two vertices $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ are adjacent in $G_{1} \square G_{2}$ if

1. $\left(x_{1}, y_{1}\right) \in E\left(G_{1}\right)$ and $x_{2}=y_{2}$ or if
2. $\left(x_{2}, y_{2}\right) \in E\left(G_{2}\right)$ and $x_{1}=y_{1}$.

Strong Product

Two vertices $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ are adjacent in $G_{1} \boxtimes G_{2}$ if

1. $\left(x_{1}, y_{1}\right) \in E\left(G_{1}\right)$ and $x_{2}=y_{2}$ or if
2. $\left(x_{2}, y_{2}\right) \in E\left(G_{2}\right)$ and $x_{1}=y_{1}$ or if
3. $\left(x_{1}, y_{1}\right) \in E\left(G_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in E\left(G_{2}\right)$.

Decomposition

Definition

G is prime, if $\nexists A * B=G$ with A, B nontrivial, i.e. $|V(A)|,|V(B)|>1$. (* $=\square, \boxtimes$)

Aim: Prime factor decomposition (PFD) of given G.

Prime Factor Decomposition

Theorem (Sabidussi (1959))
PFD of every connected graph w.r.t. the Cartesian product is unique.
Theorem (Dörfler and Imrich (1969), McKenzie (1971))
PFD of every connected graph w.r.t. the strong product is unique.
Theorem (Imrich and Peterin (2007))
PFD of every connected graph w.r.t. the Cartesian product can be computed in $O(|E(G)|)$ time.

Theorem (Hammack and Imrich (2009))
PFD of every connected graph w.r.t. the strong product can be computed in $O\left(|E(G)| \Delta^{2}\right)$ time.

Decomposition of Cartesian Product

Decomposition of Cartesian Product

Copies of Factors in a Product are called layer or fiber.

MAIN IDEA: Decomposition strong product

Find a spanning subgraph with special properties in G, the so called cartesian skeleton.

The decomposition of the cartesian skeleton w.r.t. cartesian product together with some additional operations leads to the possible factors of the strong product.

MAIN IDEA: Decomposition strong product

MAIN IDEA: Decomposition strong product

MAIN IDEA: Decomposition strong product

Motivation

Two isomorphic product graphs.

Motivation

Problem:

Often real data, that is represented by graphs, is disturbed and thus the corresponding "product graph" is disturbed.

Motivation

Problem:

Often real data, that is represented by graphs, is disturbed and thus the corresponding "product graph" is disturbed.

- How can we recognize original factors of disturbed products?
- How can we recognize at least some parts of a disturbed product as a product?

What if prime?

Aim: Get a product of graphs that is "near" a given prime graph (approximate products).

Remark: Induced neighborhoods in products are products.

IDEA: Approximate Products

IDEA: Approximate Products

IDEA: Approximate Products

Tools

1. $\mathbf{S}=\mathbf{1}$-condition

2. Backbone $\mathbb{B}(G)$
3. Color-Continuation

Thinness (S=1-condition)

Let G be a graph and $v, w \in V(G)$.

- v, w are in Relation S if $\mathrm{N}[\mathrm{v}]=\mathrm{N}[\mathrm{w}]$
- We call a graph S-thin if no two vertices v, w are in Relation S.

If G is S-thin the Cartesian edges are uniquely determined

Thinness (S=1-condition)

WHAT ARE THE FIBERS ?

Thinness (S=1-condition)

The Backbone $\mathbb{B}(G)$

$$
\begin{aligned}
\mathbb{B}(G) & :=\left\{v \in V(G)| | S_{v}(v) \mid=1\right\} \\
& =\{v \in V(G) \mid N[v] \text { is strictly maximal in } G\}
\end{aligned}
$$

Theorem
$\mathbb{B}(G)$ is a connected dominating set.

The Backbone $\mathbb{B}(G)$

Figure: Examples

The Backbone $\mathbb{B}(G)$

For a local covering we consider neighborhoods of vertices of $\mathbb{B}(G)$ only.
Why?

Theorem
All Cartesian edges that satisfy the $\boldsymbol{S}=1$-condition in an arbitrary induced neighborhood also satisfy the $\boldsymbol{S}=1$-condition in the induced neighborhood of a vertex of the backbone $\mathbb{B}(G)$.

Color-Continuation

Color-continuation from H_{1} to H_{2} :
For all newly colored edges with color c in H_{2} ($\mathbf{S}=1$-condition Cartesian edges in H_{2}), we have to find a representative edge that satisfies the $\mathbf{S}=1$-condition in H_{1} and was already colored in H_{1}.

Color-Continuation

Color-continuation from H_{1} to H_{2} :
For all newly colored edges with color c in H_{2} ($\mathbf{S}=1$-condition Cartesian edges in H_{2}), we have to find a representative edge that satisfies the $\mathbf{S}=1$-condition in H_{1} and was already colored in H_{1}.

Color-Continuation

Color-continuation from H_{1} to H_{2} :
For all newly colored edges with color c in H_{2} ($\mathbf{S}=1$-condition Cartesian edges in H_{2}), we have to find a representative edge that satisfies the $\mathbf{S}=1$-condition in H_{1} and was already colored in H_{1}.

Color-Continuation

Color-continuation from H_{1} to H_{2} :
For all newly colored edges with color c in H_{2} ($\mathbf{S}=1$-condition Cartesian edges in H_{2}), we have to find a representative edge that satisfies the $\mathbf{S}=1$-condition in H_{1} and was already colored in H_{1}.

Example: Color-Continuation fails

Local Approach

Used Subproducts

1-neighborhood $\langle N[(x, y)]\rangle=\langle N[x]\rangle \boxtimes\langle N[y]\rangle$

Ihs.: The edge-neighborhood $\langle N[(a, y)] \cup N[(b, y)]\rangle$
rhs.: The N^{*}-neighborhood $N_{(a y),(b y)}^{*}=\left\langle\cup_{z \in N[(a y)] \cap N[b y]} N[z]\right\rangle$

Local Approach

INPUT: thin graph G;

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;
Take next $y \in \mathbb{B}_{B F S}(G)$;

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;
Take next $y \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[y]\rangle)$;

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;
Take next $y \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[y]\rangle)$;
IF (color-conti works OR $\langle N[x]\rangle$ and $\langle N[y]\rangle$ are thin) THEN $\sqrt{ }$;

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;
Take next $y \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[y]\rangle)$;
IF (color-conti works OR $\langle N[x]\rangle$ and $\langle N[y]\rangle$ are thin) THEN $\sqrt{ }$;
ELSE IF ((x, y) is Cartesian) THEN $\operatorname{PFD}(\langle N[x] \cup N[y]\rangle) ;$

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;
Take next $y \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[y]\rangle)$;
IF (color-conti works OR
$\langle N[x]\rangle$ and $\langle N[y]\rangle$ are thin) THEN $\sqrt{ }$;
ELSE IF (($x, y)$ is Cartesian) THEN $\operatorname{PFD}(\langle N[x] \cup N[y]\rangle) ;$

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;
Take next $y \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[y]\rangle)$;
IF (color-conti works OR
$\langle N[x]\rangle$ and $\langle N[y]\rangle$ are thin) THEN $\sqrt{ }$;
ELSE IF (($x, y)$ is Cartesian) THEN $\operatorname{PFD}(\langle N[x] \cup N[y]\rangle) ;$
$\operatorname{ELSEPFD}\left(\left\langle N_{x, y}^{*}\right\rangle\right)$;

Local Approach

INPUT: thin graph G;

Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;
Take next $y \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[y]\rangle)$;
IF (color-conti works OR
$\langle N[x]\rangle$ and $\langle N[y]\rangle$ are thin) THEN $\sqrt{ }$;
ELSE IF (($x, y)$ is Cartesian) THEN $\operatorname{PFD}(\langle N[x] \cup N[y]\rangle) ;$
$\operatorname{ELSEPFD}\left(\left\langle N_{x, y}^{*}\right\rangle\right) ;$

Local Approach

INPUT: thin graph G;
Compute $\mathbb{B}_{B F S}(G)$;
Take first $x \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[x]\rangle)$;
Take next $y \in \mathbb{B}_{B F S}(G) ; \operatorname{PFD}(\langle N[y]\rangle)$;
IF (color-conti works OR
$\langle N[x]\rangle$ and $\langle N[y]\rangle$ are thin) THEN $\sqrt{ }$;
ELSE IF ((x, y) is Cartesian) THEN $\operatorname{PFD}(\langle N[x] \cup N[y]\rangle) ;$
$\operatorname{ELSEPFD}\left(\left\langle N_{x, y}^{*}\right\rangle\right) ;$

OUTPUT: Product-colored graph G and Primefactors of G;

Local Approach

Theorem

The Local Approach determines the prime factors and the corresponding product coloring of a given graph $G=(V, E)$ with bounded maximum degree in $O\left(|V| \Delta^{6}\right)$ time.

Approximate Products - Results

Test DataSet

I

Approximate Products - Approach

How much perturbation is allowed s.t. we could recover both original factors?

Pertubation vs SuccessExactALLFactors

Pertubation vs PrimeN

primeN vs SuccessExactALLFactors

Maximal Factorized Subgraph H

Ratio of $H=\frac{1}{2}\left(\frac{|V(H)|}{|V(G)|}+\frac{|E(H)|}{|E(G)|}\right)=\frac{1}{2}\left(\frac{19}{35}+\frac{51}{106}\right)=\frac{1}{2}(0.54+0.48)=0.51$

Summary

- New Local Approach for PFD that runs in $O\left(|V| \Delta^{6}\right)$ time.
- Suitable Results for Approximate Graph Products.

Outlook

- What if the subproducts are approximate products?
- Approximate products w.r.t. other products (Cartesian, direct, ...)
- Generalization (factorization of directed graphs, weighted graphs, hypergraphs) and Recognition of approximate graph products of those graphs.
- Preprocessing step via statistical approaches (degree distributions, shortest paths distributions, ...) that gives us (at least) necessary conditions to decide that a prime graph is either very similar to a product graph or not

Download

http://www.bioinf.uni-leipzig.de/~marc/download.html

Thanks to Peter F. Stadler, Wilfried Imrich, Werner Klöckl and Lydia Gringmann!

Thank you for your attention!

