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Outline

Reasons for considering probability models of phylogenetic trees and
generate random trees with models :

Understand speciation and extinction.

Do predictions that models make about tree shape which can be
used to test hypothesis concerning speciation.

Testing models: how likely is it that model reconstructs a
observed tree

Aim: infer how diversity has arisen.
How: fitting stochastic models to tree data.
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Databases of Phylogenetic Trees

TreeBASE

5212 trees

leaves are species

amount of leaves: 4. . . 960

monotomies and polytomies
solved randomly

PANDIT

46428 trees

leaves are proteins

amount of leaves: 2. . . 5121

monotomies and polytomies
solved randomly
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ERM model

Null model of growing trees (simple continous-time branching
process).

Assumption: Each branch has an equal probability of splitting.

Initialize t = 0: Generate root with target number of leaves l .

Iterate while ∃ leaf l with label n > 1:

Replace leaf l by a cherry.

Assign new leaves with labels i and n− i .

Probability that the left sister clade contains i taxa is independent
of n
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Likelihood for ERM model Example
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Likelihood for ERM model Example
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LERM(T ) = ∏
x∈I(T )

pA(s(left(x))|s(x))
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Likelihood for ERM model Example
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Likelihood for ERM model Example

a

b

d e

c

f g

h i

LERM(T ) = pa(2|5)·
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Likelihood for ERM model Example
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LERM(T ) = pa(2|5) ·pb(1|2)·

Stephanie Keller-Schmidt 6



Outline Basics Models Likelihoods Summary

Likelihood for ERM model Example
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LERM(T ) = pa(2|5) ·pb(1|2) ·pc(1|3)·
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Likelihood for ERM model Example
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LERM(T ) = pa(2|5) ·pb(1|2) ·pc(1|3) ·pg(1|2)
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Age model

Idea: The longer species i has not been involved in speciation, the
less likely it is to do so now.

Initialize: Set time t = 0, generate root node.

Iterate:

Increment time t .

From the set of leaves, choose leaf l with probability

pi ∝ (t − tl)
−1

Replace l by a cherry.

t = number of leaves = current time; tl creation time of leaf l
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Age model - Example
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t = 0
Lt=0 =

{

Aage=0
}

A
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Age model - Example
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t = 1
old : Lt=0 =

{

Aage=0
}

new: Lt=1 =

{

Bage=0,Cage=0
}

b
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PA =
1

(1−0) = 1
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Age model - Example
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t = 2
old : Lt=1 =

{

Bage=0,Cage=0
}

new: Lt=2 =

{

Cage=1,Dage=0,Eage=0
}
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Age model - Example
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t = 3
old : Lt=2 =

{

Cage=1,Dage=0,Eage=0
}

new: Lt=3 =

{

Dage=1,Eage=1,Fage=0,Gage=0
}
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Age model - Example
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Likelihood - Exact Calculation

For ERM model

LERM(T ) = ∏
x∈I(T )

pA(s(left(x))|s(x))

For AGE model
Calculate PAGE (T ) exactly by adding up probabilities of all
sequences of branchings for T

LAGE(T ) = ∑
s∈Sc(t)

p(s,T )

with

p(s,T ) =
n−1

∏
i=2

(s(i)− s(m(i))−1

∑j∈B(s,s(i))(s(i)− s(m(j))−1

and

B(s, t) = {j ∈ I\{1} | s(m(j)) < t < s(j)}∪ {j ∈A\ I | s(m(j)) < t}
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Likelihood for AGE model Example
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LAGE(T ) = ∑
s∈Sc(t)

p(s,T )
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Likelihood for AGE model Example

a
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Likelihood for AGE model Example
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Likelihood for AGE model Example
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Likelihood for AGE model Example
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Likelihood for AGE model Example
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Likelihood for AGE model Example

a
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d e
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LAGE(T ) = ∑
s∈Sc(t)

p(s,T )

LAGE(T ) = p ((b,c,g),T )+p ((c,b,g),T )+p ((c,g,b),T )
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Likelihood - Estimation for growth models

Naive ways of sampling:

Enough calculation capacity

Or

B is set of all branching sequences leading to “target tree”

C ⊆ B is sample of B with |C| << |B|

Each possible path has same probability

L =
|B|

|C|
∗ ∑

ϑ∈C

p(ϑ)
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Likelihood - Estimation for growth models

What if |Z | is too large?

Naive Approach: Sample each trajectory with equal probability.
Problem: # trajectories ↑ and # samples ↓ | small Zn  L(Θ ∈ Zn) ↓

-31

-30

-29

-28

-27

-26

-25

-24

-23

-22

-21

 0  10000  20000  30000  40000  50000

L
L

H

nr of repeats

loglikelihood estimation

AGE (naive sampling)
ERM (exact llh calculation)
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Likelihood - Estimation for growth models

X1 •

X2 • • • •

X3 • • • •

...

Xn−1 • • . . . • •

Xn • • . . . • •

Z2

Z3

Zn−1

Zn

⇒ q-dynamics restricted to Z1, . . .Zn

qi(y |x) =
pi(y |x)

s(x)
,

i ∈{1, . . .n−1}, x ∈ Zi , y ∈ Zi+1

⇒ normalization

s(x) = ∑
y∈Zi+1

p(y |x) .

⇒ probability with which system

produces Θ ∈ Z

S(Θ) =
n−1

∏
i=1

qi(Θi+1|Θi)
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Likelihood - Estimation for growth models

Assign “output" A for each trajectory Θ ∈ Z

A(Θ) =
n−1

∏
i=1

s(Θi) .

Expectation value of A over trajectories under q-dynamics = probability
L that p-dynamics ends up in the target set Zn.

⇒ 〈A〉 = L
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Likelihood - Estimation for growth models
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Summary

Sample loglikelihood of growth models using an importance
sampling method.

Applicable if for each i ∈ {1, . . . ,n−1} and all states x ∈ Xi

1 it can be decided efficiently (fast) if x ∈ Zi or not.
2 the normalization s(x) can be computed efficiently.

Requirements are fullfilled by the models of tree growth
⇒ Use the most probable branching sequences only.
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Thanks to Konstantin

and
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Expectation value of A over trajectories under q-dynamics = probability L that
the p-dynamics ends up in the target set Zn, as shown by the following
sequence of term replacments.

〈A〉 = ∑
Θ∈Z

S(Θ)A(Θ) (1)

= ∑
Θ∈Z

n−1

∏
i=1

qi(Θi+1|Θi)
n−1

∏
j=1

s(Θj) (2)

= ∑
Θ∈Z

n−1

∏
i=1

qi(Θi+1|Θi)s(Θi) (3)

= ∑
Θ∈Z

n−1

∏
i=1

pi(Θi+1|Θi) (4)

= ∑
Θ∈Z

R(Θ) (5)

= ∑
Θ∈X

R(Θ) (6)

= L (7)
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