NIP search and analysis in Metazoans

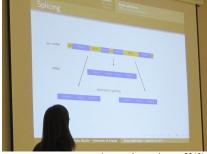
Jörg Lehmann

Bioinformatics Group Department of Computer Science University of Leipzig

25th TBI Winterseminar in Bled, 2010

Outline

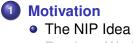
Motivation


- The NIP Idea
- Previous Work

2 NIPs in Metazoa

- Data Compilation and NIP Extraction
- NIP Distribution Results

Introns? Evolution? A quick reminder.


- spliceosomal intron positions often conserved across species
- intron positions as genome-level character

(source: Langenberger 2010)

Motivation ●ooooo	NIPs in Metazoa ooooooooo	Sumn
The NIP Idea		

2 NIPs in Metazoa

- Data Compilation and NIP Extraction
- NIP Distribution Results

The NIP Idea

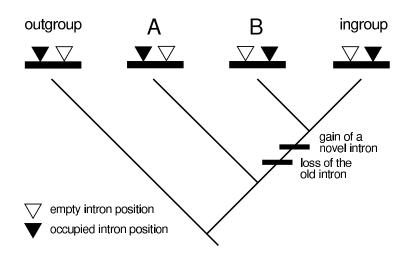
Near Intron Positions (NIPs)

ref protein

Daes GCTARTCCCCTGCCCACAGAGAAMCCG_tagttg//ittittettgiagCCTTGGAFTCCA Dain GCCARTCCCTGCCCACAGAGAAMCCG_tagttg//ittittettgiagCCTTGGAFTCCA Dain GCCARTCCCCGCCCACAGAGAAMCCG_tagttg//catttettgiagCCTTGGAFTCCA Des GCCARTCCCCGCCCACAGAGAAMCCGgtagttg//catttettgiagCCTTGGAFTCCA Des GCCARTCCCGGCCACAGAGAAMCCGgtagttg//cgtttettgiagCCTTGGAFTCCA Dan AGTCARTCCCGGCCACAGAGAAMCCGgtagtg//cgtttettgiagCCTTGGAFTCCA Dan AGTCARTCCCGGCCACAGAGAAMCCGgtagtg//cgtttetgiagCCTTGGAFTCCA Dan GCCARTCCCGGCCACAGAGGAAMCCGgtagtg//cgtttetgiagCCTTGGAFTCCA Dan GCCARTCCCGGCCACAGAGGAAMCCGgtagtg//cgtttetgiggCCTTGGGGGCCA Dage GCCARTCCCTAGCCCATCAGGAGAAMCCGgtagttg//cttetgiggCGTTTGGGGGCCAC Dage GCCARTCCCTAGCCCATCAGGAGAAMCCGgtagttg//cttetgiggCGTTTGGGGGCCAC Dage GCCARTCCCTAGCCCATCAGGAGAAMCCGgtagttg//cttetgiggCGTTTGGGGGCCAC Dage GCCARTCCCTAGCCCATCAGGAGAAMCCGgtagttg//cttetgiggCGTTTGGGGGCCAC Dage GCCARTCCCTAGCCCATCAGGAGAAMCCG

Dgri GGTGATTCCANTGCANTCAAAGAGAAACGAgttagttt//tctgtetttgcagGCTTTGGTGCAA Dvir TGGGAATCAAAAGCATTAAAAGAGAACGTgtaagttt//ttattatttgcagGCTTTGGTGCAA Dwoj GCGGACTCAATAGCATTAAAAGAGAAACGTgtaagttt//ttttatattgcagGCCTTGGTGTGCAA

IntronPos2



Motivation
000000

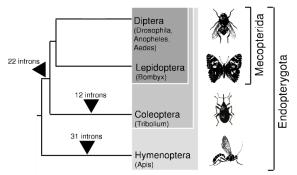
NIPs in Metazoa

The NIP Idea

Phylogenetic Inference

Notivation
000000

Outline

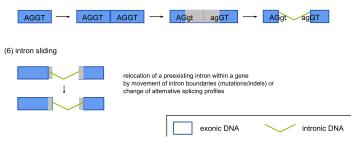

Previous Work

2 NIPs in Metazoa

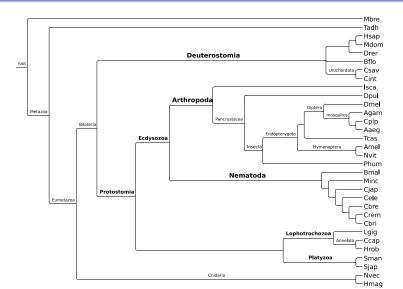
- Data Compilation and NIP Extraction
- NIP Distribution Results

NIPs in Holometabolous Insects.

- NIP as phylogenetic marker (hypothesis testing)
- beetles more closely related to (butter-)flies than bees/wasps.



Krauss et al.: Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. *Mol Biol Evol*, 25:821-830, 2008.


Novel Introns in Drosophila.

- NIPs to identify recent intron gain and its mechanisms
- intron sliding and tandem duplication are causes for novel introns in *Drosophila*

(3) tandem exon duplication including a proto-splice site

Metazoan Species Overview. Supposed Cladogram.

Outline

• The NIP Idea

Previous Work

2 NIPs in Metazoa

Data Compilation and NIP Extraction

NIP Distribution Results

Compilation of Orthologous Genes.

- start: all C. elegans protein-coding genes with D. melanogaster 1:1 ortholog (Ensembl/BioMart) [3331 genes]
- 2 retrieve EnsemblCompara orthologs
 [13 species]
- BLAST-based ortholog annotation and CDS extraction [> 28 genomes]
- exclusion of some species (too few/no protein data available)

NIP Pipeline

- Multiple codon alignment (Muscle, transAlign.pl,...)
- Extraction of alignment regions containing NIPs of distance
 < 32 nt (out: 45890 NIP regions from 3276 genes)
- Filtering steps. Require:
 - $\bullet\,$ amino-acid conservation score ≥ 0.75
 - $\bullet \ge 6$ non-gap characters around introns
 - strict splice site consensus (g, ct, ag:act, a, g)

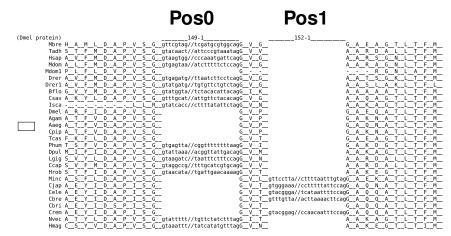
Final Dataset

- 5616 NIPs (from 2589 aln regions and 1220 genes)
- within 32 species
- (1349 parsimony-informative NIPs)

Metazoan NIPs: A Nice Example Alignment.

(Dmel	protein)	149-1	152 - 1	
(bille c		ATGCCATGCTGGACGCCCCCGTATCTGGCGgttcgtag//tcgatgcgtggcag		GCGCTGAAGCTGGCACTCTGACCTTTATGG
		GTACTTTTATGGACGCTCCAGTTTCTGGAGqtacaact//attcccqtaaataq		CGGCTCGCGATGCGTTATTAACATTTATGG
		CAGTTTTCATGGATGCCCCTGTTTCTGGTGgtaagtgg//cccaaatgattcag		CTGCACGATCTGGGAACCTCACGTTTATGG
		CACTTTTCATGGATGCCCCTGTTTCTGGTGqtqaqtaa//atctttttctccaq		CTGCTCGAGCTGGGAACCTGACATTCATGG
			GG	CGTGGGAACCTGGCATTCATGG
	Drer	CTGTTTTCATGGATGCCCCGGTGTCTGGAGgtgagatg//ttaatcttcctcag	GTGTTGGTG	CTGCCACTTCTGGTAAGCTCACTTTTATGG
	Drer1	CAGTGTTCATGGACGCGCCGGTGTCAGGAGgtatgatg//tgtgttctgtctag	GTGTTGGTG	CAGCCAGTTTGGCTAAACTCACTTTCTTGG
	Bflo	GAGTCTACATGGACGCACCTGTGTCTGGGGGgtatggta//tctacacattacag	GTATTAAGG	CAGCTGCTGCAGCCACACTAACCTTCATGG
	Csav	CCAAGTATCTGGATGCACCAGTTTCTGGAGgtttgcat//attgttctacacag	GTGTGGGTG	CCGCTCAAGCAGGAACTTTAACTTTCATGG
	Isca	CTTTTACGGGgtatcacc//cttttatattctag	GTGTGAATG	CAGCCAAGGCTGGGACACTTACATTCATGG
			GAGTTCCCG	GCGCCGAGCAGGCCACCCTCACCTTCATGG
			GTGTGCCCG	GTGCAAAGAACGCGACGCTCACGTTCATGG
			GTGTTCCCG	GAGCTCAGAATGCTACTCTGACCTTCATGG
			GAGTTCCCG	GAGCTAAGAACGCCACGCTGACGTTCATGG
			GAGTCACGG	GGGCGGAGGCCGGGACCCTCACTTTTATGG
		CTTCATTTGTTGATGCTCCTGTGTCTGGAGgtgagtta//cggttttttttaag		GCGCAAAAGATGGTACTCTGACTTTTATGG
		TGATTTTCATTGATGCTCCAGTTTCTGGAGgtattaaa//acggttattgacag		CTGCTAAAGCTGGAACTTTGACTTTCATGG
		CAGTTTATCTTGATGCACCAGTCTCAGGGGgtaagatc//taatttctttccag		CAGCTAGAGATGCTTTACTCACATTCATGG
		CGGTCTTCATGGATGCCCCTGTGTCTGGAGgtaggccg//tttgcatcgtgcag		CCGCTAGAGACGCCCTCTTGACCTTCATGG
		CCACGTTTATTGATGCCCCTGTTTCTGGAGgtaacata//tgattgaacaaaag		CAGCCAAGGAAGGTACTTTGACGTTTATGG
				tagGTGCAGAAAAGGCTACTTTAACGTTTATGA
				cagGCGCCCAAAACGCCACACTAACATTCATGG
				cagGCGCCCAGCAAGCTACACTAACATTTATGG
				cagGAGCCCAACAAGCCACACTCACTTTATGG
			GCGTCACTG	GAGCTCAACAAGCCACGTTGACATTTATGG
				cagGCGCCCAACAAGCGACTCTCACTTTCATGG
		CAACATATTTAGATGCACCTGTTTCGGGAGgtattttt//tgttctatctttag		CAGCAAAAGCAGGTACACTGACATTTATGG
	Hmag	GTTCATATGTGGATGCACCTGTTTCAGGGGgtaaattt//tatcatatgtttag	GIGITAACG	CTGCAAAAGAAGGAACATTGACAATTATGG

from ortholog set B0250.5 (Cele)
ref protein is Dmel (FBpp0085821/FBgn0034390)


Metazoan NIPs: A Nice Example Alignment.

Pos0 <32nt Pos1

(Dme]	protein)	149-1	152-1	
(blic c		ATGCCATGCTGGACGCCCCCGTATCTGGCGgttcgtag//tcgatgcgtggcag		GCGCTGAAGCTGGCACTCTGACCTTTATGG
		GTACTTTTATGGACGCTCCAGTTTCTGGAGgtacaact//attcccgtaaatag		CGGCTCGCGATGCGTTATTAACATTTATGG
		CAGTTTTCATGGATGCCCCTGTTTCTGGTGgtaagtqg//cccaaatgattcag		CTGCACGATCTGGGAACCTCACGTTTATGG
		CACTTTTCATGGATGCCCCTGTTTCTGGTGgtgagtaa//atctttttctccag		CTGCTCGAGCTGGGAACCTGACATTCATGG
			GG	CGTGGGAACCTGGCATTCATGG
	Drer	CTGTTTTCATGGATGCCCCGGTGTCTGGAGgtgagatg//ttaatcttcctcag	GTGTTGGTG	CTGCCACTTCTGGTAAGCTCACTTTTATGG
		CAGTGTTCATGGACGCGCCGGTGTCAGGAGgtatgatg//tgtgttctgtctag		CAGCCAGTTTGGCTAAACTCACTTTCTTGG
		GAGTCTACATGGACGCACCTGTGTCTGGGGGgtatggta//tctacacattacag		CAGCTGCTGCAGCCACACTAACCTTCATGG
		CCAAGTATCTGGATGCACCAGTTTCTGGAGgtttgcat//attgttctacacag		CCGCTCAAGCAGGAACTTTAACTTTCATGG
	Isca	CTTTTACGGGgtatcacc//cttttatattctag	GTGTGAATG	CAGCCAAGGCTGGGACACTTACATTCATGG
	Dmel	CTCGGTTTATCGATGCCCCCGTTTCCGGCG	GAGTTCCCG	GCGCCGAGCAGGCCACCCTCACCTTCATGG
	Agam	CAACGTTCGTCGATGCGCCCGTGTCCGGCG	GTGTGCCCG	GTGCAAAGAACGCGACGCTCACGTTCATGG
	Aaeg	CTACCTTCGTCGATGCCCCGGTTTCCGGTG	GTGTTCCCG	GAGCTCAGAATGCTACTCTGACCTTCATGG
	J Cpip	CGACCTTTGTCGATGCGCCCGTTTCCGGTG	GAGTTCCCG	GAGCTAAGAACGCCACGCTGACGTTCATGG
	Tcas	TCAAGTTTCTCGACGCTCCGGTCTCAGGTG	GAGTCACGG	GGGCGGAGGCCGGGACCCTCACTTTTATGG
		CTTCATTTGTTGATGCTCCTGTGTGTGTGGAGgtgagtta//cggttttttttaag		GCGCAAAAGATGGTACTCTGACTTTTATGG
		TGATTTTCATTGATGCTCCAGTTTCTGGAGgtattaaa//acggttattgacag		CTGCTAAAGCTGGAACTTTGACTTTCATGG
		CAGTTTATCTTGATGCACCAGTCTCAGGGGgtaagatc//taatttctttccag		CAGCTAGAGATGCTTTACTCACATTCATGG
		CGGTCTTCATGGATGCCCCTGTGTCTGGAGgtaggccg//tttgcatcgtgcag		CCGCTAGAGACGCCCTCTTGACCTTCATGG
		CCACGTTTATTGATGCCCCTGTTTCTGGAGgtaacata//tgattgaacaaaag		CAGCCAAGGAAGGTACTTTGACGTTTATGG
				agGTGCAGAAAAGGCTACTTTAACGTTTATGA
				agGCGCCCAAAACGCCACACTAACATTCATGG
				agGCGCCCAGCAAGCTACACTAACATTTATGG
				agGAGCCCAACAAGCCACACTCACTTTATGG
			GCGTCACTG	GAGCTCAACAAGCCACGTTGACATTTATGG
				agGCGCCCAACAAGCGACTCTCACTTTCATGG
		CAACATATTTAGATGCACCTGTTTCGGGAGgtatttt//tgttctatctttag		CAGCAAAAGCAGGTACACTGACATTTATGG
	Hmag	GTTCATATGTGGATGCACCTGTTTCAGGGGgtaaattt//tatcatatgtttag	GTGTTAACG	CTGCAAAAGAAGGAACATTGACAATTATGG

from ortholog set B0250.5 (Cele)
ref protein is Dmel (FBpp0085821/FBgn0034390)

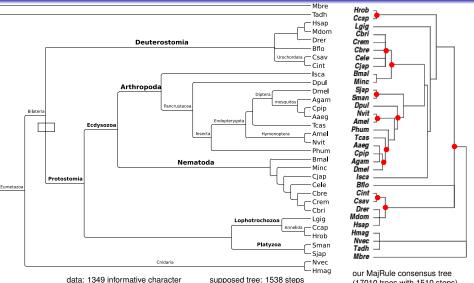
Metazoan NIPs: A Nice Example Alignment.

from ortholog set B0250.5 (Cele)
ref protein is Dmel (FBpp0085821/FBgn0034390)

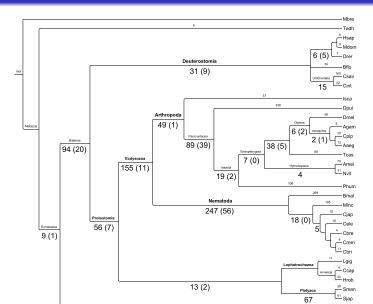
Metazoan NIPs: Example Character Matrix.

```
BUZDU.1.4/-U 48-1 BU
 'B0250.5.149-1 152-1' '
MATRIX
Mbre
        Tadh
        ?00?0???
Hrob
        ????0???
Bmal
        ?00?????
Cjap
        ?00?1???
Cele
        ????100?
Cbre
        ?00??00?
Crem
        ?00?100?
        ?00??00?
Cbri
Sman
        ?1?0????
Nvec
        ?00?0?11
Hmag
        ?00?0???
Mdom
        000?0?11
Drer
        000?0???
.
```

Outline


- The NIP Idea
- Previous Work

- Data Compilation and NIP Extraction
- NIP Distribution Results


Parsimony Tree Search with PAUP*.

hsearch addseq=random swap=tbr nreps=1000

(17010 trees with 1510 steps)

Synapomorphic and Autapomorphic NIPs for Supposed Tree

Open Questions.

- position of Amphioxus (Bflo)
- position of the flatworms (Platyhelminthes, *Sjap/Sman/Smed*)

Limitations with MP and NIP character

- Long Branch Attraction solution: dense taxon sampling
- limited amount of informative character changes in some branches vs
- conflicting (but frequent) character changes leading to unresolved clades

Where To Go Next?

- improve/extend ortholog dataset
- evaluate specific parts of the Metazoan tree (testing phylogenetic hypotheses), e.g. within Caernorhabditis

Summary

- NIP concept and application as phylogenetic marker and novel intron search
- NIP data for Metazoan seems promising
- To improve
 - more reliable and complete ortholog assignments (increase data and taxa)
 - extend automated NIP validation

Thank You!

Many thanks to:

Carina Eisenhardt (Genetics Group Uni Leipzig)
Veiko Krauss

• Peter F. Stadler

Thank you for your attention! Any questions? Appendix

For Further Reading

For Further Reading I

- - Krauss V, Thümmler C, Georgi F, Lehmann J, Stadler PF, Eisenhardt C.

Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. *Mol Biol Evol*, 25:821-830, 2008.

Lehmann J, Eisenhardt C, Stadler PF, Krauss V. Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication. *BMC Evol Biol*, in revision.