Background	Previous work	Statistical segmentation method	Results	Outlook

A statistical method to detect expressed segments in Tiling Array data

Christian Otto

Bioinformatics, Leipzig

February 2010

Table of content

 Background
 Previous work
 Statistical segmentation method
 Results
 Outlook

Why tiling arrays?

• unbiased view of transcription

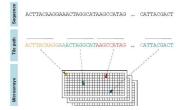
Why tiling arrays?

- unbiased view of transcription
- no mRNA enrichment necessary

Why tiling arrays?

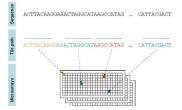
- unbiased view of transcription
- no mRNA enrichment necessary
- detection of rare transcripts and different splice variants

Why tiling arrays?

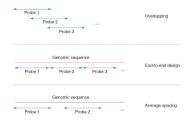

- unbiased view of transcription
- no mRNA enrichment necessary
- detection of rare transcripts and different splice variants
- can capture expression on large genomic regions

Results C

Outlook


Design of genomic tiling arrays

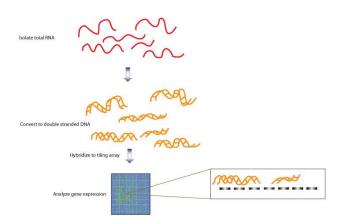
General design:



Design of genomic tiling arrays

General design:

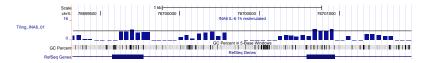
Tile path selections:



Previous work

Statistical segmentation method

Results O


Transcriptome mapping with tiling arrays

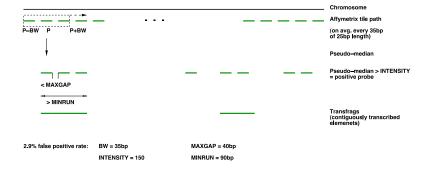
 hybridization to sequence that is similar or identical to the target

- hybridization to sequence that is similar or identical to the target
- use of mismatch probes in Affy Tiling Arrays
- exclude repeat regions annotated by Repeat Masker

- hybridization to sequence that is similar or identical to the target
- use of mismatch probes in Affy Tiling Arrays
- exclude repeat regions annotated by Repeat Masker
- \Rightarrow rough intensity signal

- hybridization to sequence that is similar or identical to the target
- use of mismatch probes in Affy Tiling Arrays
- exclude repeat regions annotated by Repeat Masker
- \Rightarrow rough intensity signal

 \Rightarrow task of data segmentation


Previous work

- simple intensity thresholding
- proximity-based heuristics (e.g. Kampa et al. 2004)
- dynamic programming
- hidden Markov models

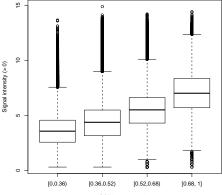
Previous work

Statistical segmentation method

Results

Outlook

Statistical segmentation method



Previous work

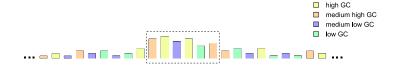
Statistical segmentation method

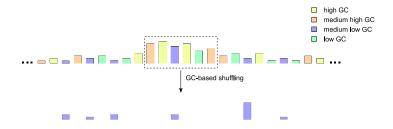
Results C

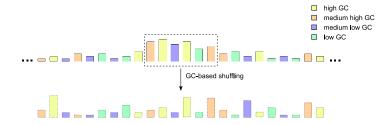
Signal intensity and GC content

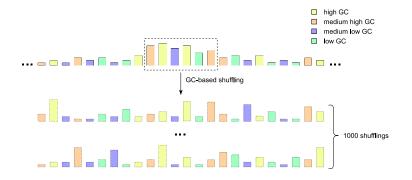
GC/N ration in probe

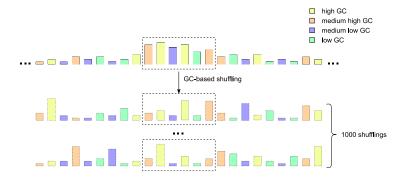
Previous work

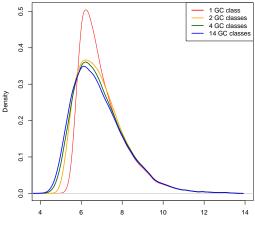

Statistical segmentation method

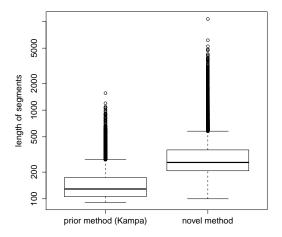

Results


Outlook


Statistical segmentation method



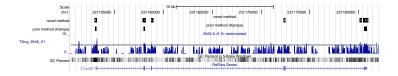




Influence of GC classification



Average intensity scores


Comparison of segment lengths

Example of exon structure

Example of exon structure

Preliminary conclusions:

- fast statistical method to detect expressed segments
- consideration of GC bias
- detection of longer segments

Future work

- evaluation of reported segments
- use of median or pseudomedian over windows
- consider other sequence-specific biases
- support of other tiling array platforms

Bibliography

- J M Johnson, S Edwards, D Shoemaker, and E E Schadt.
- Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments.
- Trends Genet, 21(2):93-102, Feb 2005.
- T E Royce, J S Rozowsky, P Bertone, M Samanta, V Stolc, S Weissman, M Snyder, and M Gerstein. Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping. Trends Genet, 21(8):466-75, Aug 2005.

D Kampa, J Cheng, P Kapranov, M Yamanaka, S Brubaker, S Cawley, J Drenkow, A Piccolboni, S Bekiranov, G Helt, H Tammana, and T R Gingeras. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22 Genome Res, 14(3):331-42, Mar 2004.

M Guttman, I Amit, M Garber, C French, M F Lin, D Feldser, M Huarte, O Zuk, B W Carey, J P Cassady, M N Cabili, R Jaenisch, T S Mikkelsen, T Jacks, N Hacohen, B E Bernstein, M Kellis, A Regev, J L Rinn, and E S Lander. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.

Nature, 458(7235):223-7, Mar 2009.

The end

Thank you for listening!

Feel free to ask some questions.