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Why are we interested in this?

RNAs with (long term stable) metastable structure states

different functions coupled by change in conformation

examples: RNA switches (thermometers, riboswitches, ...)

Questions arise:

How does the structure (state) population density looks like in
equilibrium?

Starting from an initial population density, does the system reach its
equilibrium directly (traps)?

...
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RNA folding process in terms of a Markov process

state space of allowed conformations (secondary structures)

move-set defining elementary transitions between states
(insert/deletion of base pairs)

transition rates of allowed transitions (Metropolis/Kawasaki rule)

The master equation

d

dt
~p(t) = R~p(t) with formal solution ~p(t) = et·R · ~p(0).

What we need is

the initial population density ~p(0)

the transition rate matrix R = (rxy )

somebody who actually computes ~p(t)
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RNA folding process in terms of a Markov process

state space of allowed conformations (secondary structures)

move-set defining elementary transitions between states
(insert/deletion of base pairs)

transition rates of allowed transitions (Metropolis/Kawasaki rule)

The master equation

d

dt
~p(t) = R~p(t) with formal solution ~p(t) = et·R · ~p(0).

What we need is

the initial population density ~p(0)

the transition rate matrix R = (rxy )

something that actually computes ~p(t) (treekin)
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But nature spoils things for us:

number of states grows exponentially with sequence length

direct computation of master equation becomes infeasible
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But nature spoils things for us:

number of states grows exponentially with sequence length

direct computation of master equation becomes infeasible

Solution: Coarse graining of the state space!
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But nature spoils things for us:

number of states grows exponentially with sequence length

direct computation of master equation becomes infeasible

Solution: Coarse graining of the state space!

Partition the state space into macrostates

compute effective transition rates between the partitions

diagonalize the rate matrix

compute eigenvalues and eigenvectors

solve master equation
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But nature spoils things for us:

number of states grows exponentially with sequence length

direct computation of master equation becomes infeasible

Solution: Coarse graining of the state space!

Partition the state space into macrostates

compute effective transition rates between the partitions

diagonalize the rate matrix

compute eigenvalues and eigenvectors

solve master equation

How to partition the state space anyway?
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The flooding algorithm (Flamm et al. 2002)

energy sorted list of structure states

identification of all local minima

identification of minimal saddle points connecting them

assigning each structure to its respective gradient basin
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How to obtain the rate matrix R = (rxy )?

Estimation from rates between micro states kyx :

rβα =
∑

x∈α

∑

y∈β

kyxProb[x |α]

≈
∑

x∈α

∑

y∈β

kyx ·
e−

E(x)
kT

Qα

with:

kyx =

{

e−
E(y)−E(x)

kT if E (x) < E (y)
1 otherwise.
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How to obtain the rate matrix R = (rxy )?

Estimation from rates between micro states kyx :

rβα =
∑

x∈α

∑

y∈β

kyxProb[x |α]

≈
∑

x∈α

∑

y∈β

kyx ·
e−

E(x)
kT

Qα

with:

kyx =

{

e−
E(y)−E(x)

kT if E (x) < E (y)
1 otherwise.

Limited to RNA molecules no longer than some 100 nt
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small example with length = 25 nt, initial state = unfolded chain
UCCACGGCUGUUAGUGGAUAACGGC



RNA folding dynamics Barrier trees and gradient basins Boltzmann sampling and state space exploration Distance classes Shapes Summary

What about sampling secondary structures from the state space

according their Boltzmann probability to estimate partition

functions and transition rates between macrostates?
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What about sampling secondary structures from the state space

according their Boltzmann probability to estimate partition

functions and transition rates between macrostates?

Sampling may not explore the landscape sufficiently!
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MFE representatives with respect to two reference structures

GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU

(((((.....)))))(((((.....)))))(((((.....)))))

((((((((((.....(((((.....))))).....))))))))))

Landscape projection obtained by sampling 107 structures
from the ensemble

Landscape projection obtained by RNA2Dfold
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MFE representatives with respect to two reference structures

GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU
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MFE representatives with respect to two reference structures

GGGCACCCCCCUUCGGGGGGUCACCUCGCGUAGCUAGCUACGCGAGGGUUAAAGCGCCUUUCUCCCUCGCGUAGCUAACCACGCGAGGUGACCCCCCGAAAAGGGGGGUUUCCCA
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Landscape projection obtained by sampling 107 structures
from the ensemble

Landscape projection obtained by RNA2Dfold
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MFE representatives with respect to two reference structures
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Simulating folding dynamics becomes easier with prior knowledge

MFE structure is most probable in equilibrium (1st reference)

sometimes a metastable state is known (2nd reference)

partitioning into distance classes (κ, λ-neighborhoods) wrt. two
reference structures

MFEs and partition functions can be computed in O(n7)

computable for sequence up to 500 nt on modern machines

Boltzmann sampling from each κ, λ-neighborhood
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How to obtain the rate matrix R = (rxy )?

Approximation of the macro rates by Boltzmann sampling from each
distance class Sα:

rβα ≈
1

|Sα|

∑

x∈Sα

∑

y∈β∩N (x)

kyx

with:

kyx =

{

e−
E(y)−E(x)

kT if E (x) < E (y)
1 otherwise.

detailed balance must not be effected by sampling errors

sample size of 1000 per macro state proved sufficient for the
examples tested
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small example with length = 25 nt, initial state = unfolded chain

UCCACGGCUGUUAGUGGAUAACGGC

1000 samples per macrostate

UCCACGGCUGUUAGUGGAUAACGGC

Full kinetic with 10000 microstates sorted into same distance
classes



RNA folding dynamics Barrier trees and gradient basins Boltzmann sampling and state space exploration Distance classes Shapes Summary

This method may also work for other partitionings of the state

space

RNA shapes

no RNAshapes stochastic backtracking available

expected behavior can be computed for previous example
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small example with length = 25 nt, initial state = unfolded chain

UCCACGGCUGUUAGUGGAUAACGGC

1000 samples per macrostate (κ, λ-approach)

UCCACGGCUGUUAGUGGAUAACGGC

Full kinetic sorted into shapes (abstraction level 5)
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small example with length = 25 nt, initial state = unfolded chain

UCCACGGCUGUUAGUGGAUAACGGC

1000 samples per macrostate (κ, λ-approach)

UCCACGGCUGUUAGUGGAUAACGGC

Full kinetic sorted into shapes (abstraction level 4)
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small example with length = 25 nt, initial state = unfolded chain

UCCACGGCUGUUAGUGGAUAACGGC

1000 samples per macrostate (κ, λ-approach)

UCCACGGCUGUUAGUGGAUAACGGC

Full kinetic sorted into shapes (abstraction level 3)
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small example with length = 25 nt, initial state = unfolded chain

UCCACGGCUGUUAGUGGAUAACGGC

1000 samples per macrostate (κ, λ-approach)

UCCACGGCUGUUAGUGGAUAACGGC

Full kinetic sorted into shapes (abstraction level 2)
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small example with length = 25 nt, initial state = unfolded chain

UCCACGGCUGUUAGUGGAUAACGGC

1000 samples per macrostate (κ, λ-approach)

UCCACGGCUGUUAGUGGAUAACGGC

Full kinetic sorted into shapes (abstraction level 1)
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To summarize

prior knowledge can ease computational effort

Boltzmann sampling may not explore important parts of the
structure space

sampling from distance classes implicitely explores more strucutral
diversity

significantly longer RNAs can be analyzed

transition rate sampling may also work for RNAshapes partitioning
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