# Computational Methods for Graph Grammar Analysis 

Jakob Lykke Andersen, Daniel Merkle, Christoph Flamm

Master student at the
Department of Mathematics and Computer Science
University of Southern Denmark
Bled, February 2011

## Introduction

- Graph grammars have a lot of computational power
- They can model chemical reactions
- Graph Grammar Library (Christoph Flamm and Martin Mann)
- Interesting properties: Chemical patterns


## Outline

Graphs and Molecules
Graph Grammars
Formose Reaction
Derivation Graph
Path Analysis
Flows on Derivation Graphs
Summary
Future Work

## Graphs and Molecules

Undirected graphs, with labels on both nodes and edges. Molecules: Node labels $\approx$ atom names, edge labels $\approx$ bond type


Figure: A labeled undirected graph
Figure: The same graph drawn like a molecule (glycolaldehyde)

## Graph Grammars

- Graph grammar: A set of rules
- Rule: Left side, context, right side (all are subgraphs)
- Reactions as rules: Left $\approx$ broken bonds, right $\approx$ formed bonds, context $\approx$ atoms and unchanged bonds


Figure: Aldol addition, left side and context

Figure: Aldol addition, right side and context

## Graph Grammars



Figure: Addition of formaldehyde, before


Figure: Addition of formaldehyde, after

## Node Constraints

Constraint on the number of neighbours to a given node Examples:

- At least 2 hydrogen atoms
- Exactly 0 double bounded oxygens
- At least 3 bonds (of any type)
- Exactly 1 neighbouring oxygen


## Rules and Graphs for the Formose reaction

Graphs:

- Formaldehyde
- Glycolaldehyde


## Rules:

- Keto-enol isomerization
- Reverse keto-enol isomerization
- Aldol-addition
- Reverse Aldol-addition


## Derivation Graph

- Input: A set of graphs, a set of rules
- Output: A directed hypergraph, nodes are graphs (molecules), edges are rule applications (reations)
- Example: 2 generations of the formose reaction


Figure: Hypergraph style
Figure: Normal graph style

## Derivation Graph



Figure: Formose with 4 generations, hypergraph style

## Derivation Graph

Formose with all generations, but $\leq 43$ nodes per reaction External file due to size
Also available at http://imada.sdu.dk/~jla06/formose_large.pdf

## Path Analysis

- Idea: Graphs (molecules) on a simple path in a derivation graph might have an interesting relationship
- E.g: Number of occurences of a specific subgraph


Figure: Formose with 2 generations


Figure: g_1, 1 match

## Path Analysis

- Idea: Graphs (molecules) on a simple path in a derivation graph might have an interesting relationship
- E.g: Number of occurences of a specific subgraph


Figure: Formose with 2 generations


Figure: p_0, 2 matches

## Path Analysis

- Idea: Graphs (molecules) on a simple path in a derivation graph might have an interesting relationship
- E.g: Number of occurences of a specific subgraph




Figure: Formose with 2 generations
Figure: p_1, 2 matches

## Flows on Derivation Graphs

- Idea: Use network flows to model interesting queries to the derivation graph
- Current implementation: Integer Linear Programming
- Example: Can 2 formaldehyde and 1 glycolaldehyde react and become only glycolaldehyde? and how?


## IP Formulation

$$
\begin{array}{rrrr}
\text { minimize } & 0 & \text { s.t : } \\
x_{3}+x_{17}+x_{18}-x_{21}-x_{5}-x_{16}-x_{19}=0 & g_{0} \\
x_{23}+x_{1}+x_{6}-x_{22}-x_{2}-x_{8}=0 & g_{1} \\
x_{2}+x_{3}+x_{6}-x_{1}-x_{5}-x_{8}=0 & p_{0} \\
x_{9}+x_{10}+x_{17}+x_{18}-x_{4}-x_{13}-x_{16}-x_{19}=0 & p_{3} \\
x_{11}+x_{12}-x_{7}-x_{14}=0 & p_{4} \\
x_{14}+x_{15}+x_{16}-x_{12}-x_{18}-x_{20}=0 & p_{6} \\
x_{4}+x_{5}-x_{3}-x_{9}=0 & p_{1} & x_{i} \geq 0, & \forall i \in[1 ; 20] \\
x_{7}+x_{8}-x_{6}-x_{11}=0 & p_{2} & x_{21}=2 & g_{0} \\
x_{13}-x_{10}=0 & p_{5} & x_{22}=1 & g_{1} \\
x_{19}-x_{17}=0 & p_{7} & x_{23} \geq 0 & g_{1} \\
x_{20}-x_{15}=0 & p_{8} & x_{i} \in \mathbb{Z}, & \forall i \in[1 ; 23]
\end{array}
$$

## Formose Cycle









Figure: From http://de.wikipedia.org/wiki/Formose

## Flows on Derivation Graphs



## Summary

- GGL is used to explore graph grammars
- Derivation Graphs can represent chemical reaction networks
- Path analysis might find interesting properties
- Flows seem to capture the idea of chemical pathways
- A lot of possibilities to explore


## Future Work

- Path analysis: Overlap, optimization, relationships
- Flows: More models, extra constraints, enumeration
- Grammars: Pentose-Phosphate Pathway

