Computational Methods for Graph Grammar Analysis

Jakob Lykke Andersen, Daniel Merkle, Christoph Flamm

Master student at the Department of Mathematics and Computer Science University of Southern Denmark

Bled, February 2011

Introduction

- Graph grammars have a lot of computational power
- They can model chemical reactions
- Graph Grammar Library (Christoph Flamm and Martin Mann)
- Interesting properties: Chemical patterns

Outline

Graphs and Molecules

Graph Grammars

Formose Reaction

Derivation Graph

Path Analysis

Flows on Derivation Graphs

Summary

Future Work

Graphs and Molecules

Undirected graphs, with labels on both nodes and edges. Molecules: Node labels \approx atom names, edge labels \approx bond type

Figure: A labeled undirected graph

Figure: The same graph drawn like a molecule (glycolaldehyde)

Graph Grammars

- Graph grammar: A set of rules
- Rule: Left side, context, right side (all are subgraphs)
- ► Reactions as rules: Left ≈ broken bonds, right ≈ formed bonds, context ≈ atoms and unchanged bonds

Figure: Aldol addition, left side and context

Figure: Aldol addition, right side and context

(日) (同) (日) (日)

Graph Grammars

Figure: Addition of formaldehyde, before

Constraint on the number of neighbours to a given node Examples:

- At least 2 hydrogen atoms
- Exactly 0 double bounded oxygens
- At least 3 bonds (of any type)
- Exactly 1 neighbouring oxygen

Rules and Graphs for the Formose reaction

Graphs:

- Formaldehyde
- Glycolaldehyde

Rules:

- Keto-enol isomerization
- Reverse keto-enol isomerization
- Aldol-addition
- Reverse Aldol-addition

Derivation Graph

- Input: A set of graphs, a set of rules
- Output: A directed hypergraph, nodes are graphs (molecules), edges are rule applications (reations)
- Example: 2 generations of the formose reaction

Figure: Hypergraph style

Figure: Normal graph style

Derivation Graph

Figure: Formose with 4 generations, hypergraph style

Derivation Graph

For mose with all generations, but \leq 43 nodes per reaction External file due to size Also available at http://imada.sdu.dk/~jla06/for mose_large.pdf

Path Analysis

- Idea: Graphs (molecules) on a simple path in a derivation graph might have an interesting relationship
- E.g: Number of occurences of a specific subgraph

Path Analysis

- Idea: Graphs (molecules) on a simple path in a derivation graph might have an interesting relationship
- E.g: Number of occurences of a specific subgraph

Figure: Formose with 2 generations

Path Analysis

- Idea: Graphs (molecules) on a simple path in a derivation graph might have an interesting relationship
- E.g: Number of occurences of a specific subgraph

Figure: p_1, 2 matches

イロト イポト イラト イラト

Flows on Derivation Graphs

- Idea: Use network flows to model interesting queries to the derivation graph
- Current implementation: Integer Linear Programming
- Example: Can 2 formaldehyde and 1 glycolaldehyde react and become only glycolaldehyde? and how?

IP Formulation

	min	imize 0	s.t:	
$x_3 + x_{17} + x_1$	$x_8 - x_{21} - x_5$	$-x_{16} - x_1$	9 = 0	g ₀
x ₂₃ +	$x_1 + x_6 - x_2$	$x_2 - x_2 - x_2$	$x_8 = 0$	g_1
x ₂ -	$+x_3 + x_6 - x_6$	$x_1 - x_5 - x_5$	$x_8 = 0$	<i>p</i> 0
$x_9 + x_{10} + x_{17} + x_1$	$x_8 - x_4 - x_{13}$	$-x_{16}-x_{1}$	9 = 0	<i>p</i> ₃
	$x_{11} + x_{12}$	$-x_{7}-x_{1}$	4 = 0	<i>p</i> ₄
$x_{14} + x_{15}$	$+ x_{16} - x_{12}$	$-x_{18}-x_{2}$	0 = 0	<i>p</i> ₆
$x_4 + x_5 - x_3 - x_9 = 0$	p_1	$x_i \ge 0$	$, \forall i \in$	[1; 20]
$x_7 + x_8 - x_6 - x_{11} = 0$	<i>p</i> ₂	$x_{21} = 2$		g0
$x_{13} - x_{10} = 0$	<i>p</i> ₅	$x_{22} = 1$		g_1
$x_{19} - x_{17} = 0$	<i>p</i> ₇	$x_{23} \ge 0$		g_1
$x_{20} - x_{15} = 0$	<i>p</i> ₈	$x_i \in \mathbb{Z}$	$\forall i \in$	[1; 23]

Formose Cycle

・ロト ・ 日 ・ ・ ヨ ・

Figure: From http://de.wikipedia.org/wiki/Formose

Flows on Derivation Graphs

Summary

- GGL is used to explore graph grammars
- Derivation Graphs can represent chemical reaction networks
- Path analysis might find interesting properties
- Flows seem to capture the idea of chemical pathways
- A lot of possibilities to explore

Future Work

- Path analysis: Overlap, optimization, relationships
- Flows: More models, extra constraints, enumeration
- Grammars: Pentose-Phosphate Pathway
- ▶ ...