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Introduction

I Graph grammars have a lot of computational power

I They can model chemical reactions

I Graph Grammar Library (Christoph Flamm and Martin Mann)

I Interesting properties: Chemical patterns
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Graphs and Molecules

Undirected graphs, with labels on both nodes and edges.
Molecules: Node labels ≈ atom names, edge labels ≈ bond type

H

O
-

C
-

H

-

H-

C

-

H

-

O

=

Figure: A labeled undirected graph
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Figure: The same graph drawn like
a molecule (glycolaldehyde)



Graph Grammars

I Graph grammar: A set of rules

I Rule: Left side, context, right side (all are subgraphs)

I Reactions as rules: Left ≈ broken bonds, right ≈ formed
bonds, context ≈ atoms and unchanged bonds
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Figure: Aldol addition, right side
and context



Graph Grammars
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before
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Node Constraints

Constraint on the number of neighbours to a given node
Examples:

I At least 2 hydrogen atoms

I Exactly 0 double bounded oxygens

I At least 3 bonds (of any type)

I Exactly 1 neighbouring oxygen



Rules and Graphs for the Formose reaction

Graphs:

I Formaldehyde

I Glycolaldehyde

Rules:

I Keto-enol isomerization

I Reverse keto-enol isomerization

I Aldol-addition

I Reverse Aldol-addition



Derivation Graph

I Input: A set of graphs, a set of rules

I Output: A directed hypergraph, nodes are graphs (molecules),
edges are rule applications (reations)

I Example: 2 generations of the formose reaction
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Figure: Hypergraph style
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Derivation Graph
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Figure: Formose with 4 generations, hypergraph style



Derivation Graph

Formose with all generations, but ≤ 43 nodes per reaction
External file due to size

Also available at http://imada.sdu.dk/∼jla06/formose large.pdf

http://imada.sdu.dk/~jla06/formose_large.pdf


Path Analysis

I Idea: Graphs (molecules) on a simple path in a derivation
graph might have an interesting relationship

I E.g: Number of occurences of a specific subgraph
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Figure: Formose with 2 generations
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Path Analysis

I Idea: Graphs (molecules) on a simple path in a derivation
graph might have an interesting relationship

I E.g: Number of occurences of a specific subgraph
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Path Analysis

I Idea: Graphs (molecules) on a simple path in a derivation
graph might have an interesting relationship

I E.g: Number of occurences of a specific subgraph
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Figure: Formose with 2 generations
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Flows on Derivation Graphs

I Idea: Use network flows to model interesting queries to the
derivation graph

I Current implementation: Integer Linear Programming

I Example: Can 2 formaldehyde and 1 glycolaldehyde react and
become only glycolaldehyde? and how?



IP Formulation

minimize 0 s.t :

x3 + x17 + x18 − x21 − x5 − x16 − x19 = 0 g0

x23 + x1 + x6 − x22 − x2 − x8 = 0 g1

x2 + x3 + x6 − x1 − x5 − x8 = 0 p0

x9 + x10 + x17 + x18 − x4 − x13 − x16 − x19 = 0 p3

x11 + x12 − x7 − x14 = 0 p4

x14 + x15 + x16 − x12 − x18 − x20 = 0 p6

x4 + x5 − x3 − x9 = 0 p1

x7 + x8 − x6 − x11 = 0 p2

x13 − x10 = 0 p5

x19 − x17 = 0 p7

x20 − x15 = 0 p8

xi ≥ 0, ∀i ∈ [1; 20]

x21 = 2 g0

x22 = 1 g1

x23 ≥ 0 g1

xi ∈ Z, ∀i ∈ [1; 23]



Formose Cycle

Figure: From http://de.wikipedia.org/wiki/Formose

http://de.wikipedia.org/wiki/Formose


Flows on Derivation Graphs

g_0

3, 1

17, 0

18, 1

g_1

p_0

1, 1

6, 0

2, 1

p_1

p_3

4, 1

5, 0

p_2

p_4

7, 0

8, 1

9, 0

p_5

10, 0

11, 1

p_6

12, 0

13, 0

14, 1

p_8

15, 0

16, 0

p_7

19, 0

20, 0

Figure: Formose with flow annotation



Summary

I GGL is used to explore graph grammars

I Derivation Graphs can represent chemical reaction networks

I Path analysis might find interesting properties

I Flows seem to capture the idea of chemical pathways

I A lot of possibilities to explore



Future Work

I Path analysis: Overlap, optimization, relationships

I Flows: More models, extra constraints, enumeration

I Grammars: Pentose-Phosphate Pathway

I . . .
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