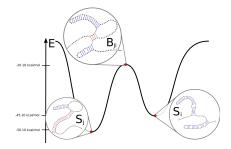
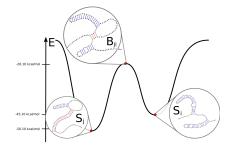
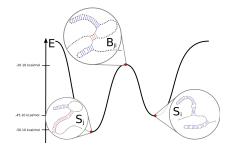

Energy barriers in a pseudoknot conformation space


Stefan Badelt

Institute for Theoretical Chemistry Theoretical Biochemistry Group

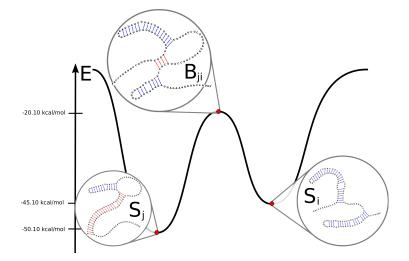

February 18, 2011

barrier heights

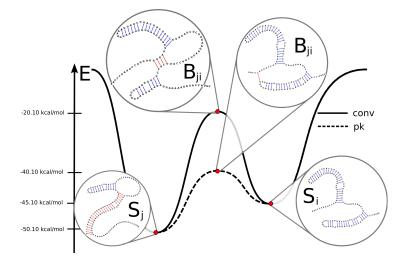


- Related problems
 - \Rightarrow estimation of mfe importance

- Related problems
 - \Rightarrow estimation of mfe importance
 - \Rightarrow cotranscriptional folding


- Related problems
 - \Rightarrow estimation of mfe importance
 - \Rightarrow cotranscriptional folding
 - \Rightarrow switch design

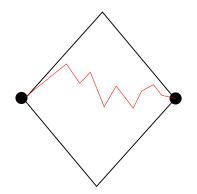
- standard computation
 - RNAsubopt including barrier structure
 - coarse graining: local minima, saddle points
 - $(\Rightarrow barrier trees)$


standard computation

- RNAsubopt including barrier structure
- coarse graining: local minima, saddle points (⇒ barrier trees)
- problems
 - high barriers need big ΔE
 - subopt output increases with length of sequence

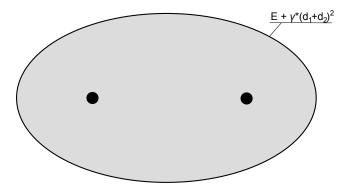
conventional vs. pseudoknot space

conventional vs. pseudoknot space

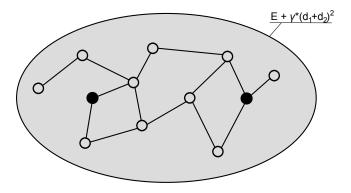


Two heuristics
⇒ pk-findpath

Stefan Badelt @ TBI ...is now finishing his diploma thesi


- Two heuristics
 - \Rightarrow pk-findpath
 - \Rightarrow guided (dirty) moveset

findpath, pk-findpath:


guided barrier detection

stacked helix moves in guided space:

guided barrier detection

stacked helix moves in guided space:

- set of structures *G*
- foreach structure in Gapply moveset \Rightarrow neighborhood N
- foreach structure in N find nearest local minimum and add to G if $E(S) + \gamma (d_1 + d_2)^2 \le E(\text{pk-findpath}) + \gamma (d_{1,2})^2$

- set of structures *G*
- foreach structure in Gapply moveset \Rightarrow neighborhood N
- foreach structure in N find nearest local minimum and add to G if $E(S) + \gamma (d_1 + d_2)^2 \le E(\text{pk-findpath}) + \gamma (d_{1,2})^2$
 - ⇒ Extract shortest, energetically best path from network (bellman ford, ...)
 - \Rightarrow Run treekin simulations to estimate first passage times

Thanks to: xtof, ivo, ronny and the tbi-crew

Thank you for your attention!