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Graphs
Graphs G, vertex set V(G), edge set E(G)

Simple graphs (left, center) and a graph with loops (right)
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Degree k; of vertex ¢ . number of edges
incident to vertex 1.

Distance d;; between two vertices:
length of shortest path between them.
Diameter diam(G) of G: maximal dis-
tance between two vertices.
Betweenness b; of a vertex: total num-
ber of shortest paths among pairs of
vertices that pass through s.

Clustering coefficient c¢;: number e; of
edges between nearest neighbors of ¢ di-
vided by k;(k; — 1)/2.



Cartesian, direct and strong product

V(GOH) = V(GxH)={(g,h) | g€ V(G) and h e V(H)},

E(GOH) = {(g,n)(d,h) |g=4d, hh' € E(H), or g¢ € E(G), h="1"}
E(Gx H) = {(9,;mM(d, 1) |94’ € E(G) and hh' € E(H)}.
P3 P4|:|P3 P3 P4 X P3 P3 P4 X P3
o) o) o)
Q Q Q
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Cartesian product Direct product Strong product
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KQ K2DK2 K2 K2 X KQ K2 K2 |X|K2
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Origin of the notation

C5DK2 05 X Ko 05 X Ko

Cartesian product Direct Product Strong product
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GXPg

A direct product (left) and a more symmetric representation (right)



Recognition algorithms
How does one recognize a
graph as a product?

Cartesian product O(m)
time.

Strong product
O(min(m?2,ma(G)A)) time.

Direct Product
O(min(mn?2, mA3) time.
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Approximate graph products

Phenotype and Genotype
Characters (traits)

10



Graphs are an appropriate topology for the description of the rela-
tionship between genotypes and phenotypes. And "characters” cor-
respond to "factors” of the graphs (Stadler, B. and P., Wagner, G.,
and Fontana, W., 2001)

e Biological data are rarely complete
e Biological data are always noisy

Thus any meaningful approach in bioinformatics must be able to deal
with inaccuracies in the input data.

This leads to the investigation of approximate graph products - and
quasilinear algorithms to recognize them (Hellmuth, Imrich, Stadler).
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Consider the following approximate product:

Complexity O(mA®). (Marc Hellmuth)
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Powers with respect to the direct product
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Graph G: O
1 2

The following matrices are the adjacency matrices of G and of its
second and third power with respect to the direct product.
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And here are the nonzero elements of the fifth power:
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Properties of (high) powers G™ of a graph G with respect to the
direct product:

e fractal structure
e same diameter as G
e power law degree distribution (Pareto distribution)

P(k) ~ak™"

Variance of the degrees very large
Makes the graph in a sense scale free
Relationship with the fractal structure.

17



Complex Networks

Networks arise e.g. in biology, ecology, mathematical chemistry, soft-
ware technology, operations research.

Investigation became a hot research topic only in the last decade,

coinciding with increased interest in the Internet network(s), social
networks, citation networks, neural networks, and so on.

What does one study:reliability, reachability, distance (small world
phenomenon), virus propagation, and so on.

18



2

00199

/ Relationshipgraph
= = Mediannetwork for human
0 MtDNA (Bandelt et al.
25 wias 2000)
o213 e (Median graphs are retracts
it > of hypercubes)
18 \,
s

00248del 11 3



Generation of probabilistic graphs with the desired properties.

Erdos-Renyi model for random graphs, it does not satisfy all require-
ments, in particular not the heavy tail distribution (scale freeness)

Models by Barabasi and Albert (1999) computationally expensive.

An appealing approach was made by Leskovec, J. Chakrabarti, D.
Kleinberg, J. Faloutsos, C. Ghahramani, Z. using the direct product
of graphs (or, equivalently, the Kronecker product of matrices)
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Given a graph G, the adjacency matrix of the direct product G Xk
is the kth power of the adjacency matrix of G with respect to the
Kronecker product.

Start with a square probability matrix P1 whose entries -5 entry rep-
resents the probability that an edge joins vertex ¢ to vertex j.

Compute the Kronecker kth power Py.

Then (an instance of) a stochastic Kronecker graph is obtained from
P by including an edge between two vertices with probability as given
N Pk-

Stochastic Kronecker graphs can be generated in linear time with

respect to their expected number of edges.
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Stochastic Kronecker are also close to real world networks.

Degree distribution Real networks exhibit the so-called *“heavy tail
degree distribution” and this is also the case with the stochastic Kro-
necker graph.

Fitting real-world networks Given a real network, finding a stochas-
tic Kronecker graph that is “similar” to the network can be done
efficiently.

Multitude of technical details is omitted
LLeskovec et al. add loops to every vertex of the generating graphs.

They really work with the strong product, not necessary.
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Leskovec and Faloutsos (2007) showed that the simple generating
matrix

.98 .58
(.58 .06)

yields a Kronecker graph that fits the Internet fairly well.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., and Ghahra-

mani, Z. (2009). Kronecker graphs: an approach to modeling net-
works. J. Mach. Learn. Res., x (X), X-X.
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DISCRETE MATHEMATICS AND ITS APPLICATIONS
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