Convex Excess and Inequalities for Partial Cubes

Sandi Klavžar

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

Graph Theory, Combinatorics and Applications Oct. 29 - Nov. 2, 2010
Zhejiang Normal University, Jinhua, China
Joint work with Sergey Shpectorov
(1) Partial Cubes
(2) Three Classical Characterizations
(3) Median Graphs and Inequalities
(4) Inequality for Partial Cubes

Isometric and convex subgraphs

- The distance $d_{G}(u, v)$ between vertices u and v of a graph G is the number of edges on a shortest u, v-path.

Isometric and convex subgraphs

- The distance $d_{G}(u, v)$ between vertices u and v of a graph G is the number of edges on a shortest u, v-path.
- H is an isometric subgraph of G if for any $u, v \in V(H)$, $d_{H}(u, v)=d_{G}(u, v)$.

Isometric and convex subgraphs

- The distance $d_{G}(u, v)$ between vertices u and v of a graph G is the number of edges on a shortest u, v-path.
- H is an isometric subgraph of G if for any $u, v \in V(H)$, $d_{H}(u, v)=d_{G}(u, v)$.
- H is a convex subgraph of a graph G if for any $u, v \in V(H)$, all shortest u, v-paths are in H.

Isometric and convex subgraphs

- The distance $d_{G}(u, v)$ between vertices u and v of a graph G is the number of edges on a shortest u, v-path.
- H is an isometric subgraph of G if for any $u, v \in V(H)$, $d_{H}(u, v)=d_{G}(u, v)$.
- H is a convex subgraph of a graph G if for any $u, v \in V(H)$, all shortest u, v-paths are in H.
- convex \Rightarrow isometric \Rightarrow induced

Partial cubes

- The d-cube Q_{d} : or hypercube of dimension d :

Partial cubes

- The d-cube Q_{d} : or hypercube of dimension d :

$$
\text { - } V\left(Q_{d}\right)=\left\{u=u^{(1)} u^{(2)} \ldots u^{(d)} \mid u^{(i)} \in\{0,1\}\right\} .
$$

Partial cubes

- The d-cube Q_{d} : or hypercube of dimension d :
- $V\left(Q_{d}\right)=\left\{u=u^{(1)} u^{(2)} \ldots u^{(d)} \mid u^{(i)} \in\{0,1\}\right\}$.
- Two vertices are adjacent if the tuples differ in one position.

Partial cubes

- The d-cube Q_{d} : or hypercube of dimension d :
- $V\left(Q_{d}\right)=\left\{u=u^{(1)} u^{(2)} \ldots u^{(d)} \mid u^{(i)} \in\{0,1\}\right\}$.
- Two vertices are adjacent if the tuples differ in one position.
- Partial cubes are isometric subgraphs of hypercubes.

Partial cubes

- The d-cube Q_{d} : or hypercube of dimension d :
- $V\left(Q_{d}\right)=\left\{u=u^{(1)} u^{(2)} \ldots u^{(d)} \mid u^{(i)} \in\{0,1\}\right\}$.
- Two vertices are adjacent if the tuples differ in one position.
- Partial cubes are isometric subgraphs of hypercubes.
- A mapping $f: H \rightarrow G$ is an isometric embedding (of H into $G)$ if $f(H)$ is an isometric subgraph of G.

Partial cubes

- The d-cube Q_{d} : or hypercube of dimension d :
- $V\left(Q_{d}\right)=\left\{u=u^{(1)} u^{(2)} \ldots u^{(d)} \mid u^{(i)} \in\{0,1\}\right\}$.
- Two vertices are adjacent if the tuples differ in one position.
- Partial cubes are isometric subgraphs of hypercubes.
- A mapping $f: H \rightarrow G$ is an isometric embedding (of H into $G)$ if $f(H)$ is an isometric subgraph of G.
- Hence partial cubes are precisely the graphs that admit isometric embeddings into hypercubes.

Partial cubes

Examples of partial cubes

- Hypercubes (of course)

Partial cubes

Examples of partial cubes

- Hypercubes (of course)
- Even cycles

Partial cubes

Examples of partial cubes

- Hypercubes (of course)
- Even cycles
- Trees

Partial cubes

Examples of partial cubes

- Hypercubes (of course)
- Even cycles
- Trees
- Permutahedron

Partial cubes

Examples of partial cubes

- Hypercubes (of course)
- Even cycles
- Trees
- Permutahedron
- Median graphs (in particular acyclic cubical complexes)

Partial cubes

Examples of partial cubes

- Hypercubes (of course)
- Even cycles
- Trees
- Permutahedron
- Median graphs (in particular acyclic cubical complexes)
- Benzenoid graphs

Partial cubes

Examples of partial cubes

- Hypercubes (of course)
- Even cycles
- Trees
- Permutahedron
- Median graphs (in particular acyclic cubical complexes)
- Benzenoid graphs
- Phenylenes

Partial cubes

Examples of partial cubes

- Hypercubes (of course)
- Even cycles
- Trees
- Permutahedron
- Median graphs (in particular acyclic cubical complexes)
- Benzenoid graphs
- Phenylenes
- Cartesian products of partial cubes

Partial cubes

- Partial cubes from hyperplane arrangements.

Partial cubes

- Partial cubes from hyperplane arrangements.
- G graph, new vertices its acyclic orientations, orientations differing by one edge of G.

Partial cubes

- Partial cubes from hyperplane arrangements.
- G graph, new vertices its acyclic orientations, orientations differing by one edge of G.
- Integer partitions: vertices $=$ partitions, edges $=$ increment largest value and decrement some other value (or vice versa).

Partial cubes

- Partial cubes from hyperplane arrangements.
- G graph, new vertices its acyclic orientations, orientations differing by one edge of G.
- Integer partitions: vertices $=$ partitions, edges $=$ increment largest value and decrement some other value (or vice versa).
- Flips of triangulations; oriented matroids; media theory.

Djoković

For an edge $a b$ of a graph G, let

$$
W_{a b}:=\{u \in V(G) \mid d(a, u)<d(b, u)\} .
$$

Djoković

For an edge $a b$ of a graph G, let

$$
W_{a b}:=\{u \in V(G) \mid d(a, u)<d(b, u)\} .
$$

Note that $V(G)=W_{a b} \cup W_{b a}$ for bipartite graphs.

Djoković

For an edge $a b$ of a graph G, let

$$
W_{a b}:=\{u \in V(G) \mid d(a, u)<d(b, u)\} .
$$

Note that $V(G)=W_{a b} \cup W_{b a}$ for bipartite graphs.

Theorem (Djoković, 1973)

A connected graph G is a partial cube if and only if G is bipartite and for any edge $u v$ of G the subgraph $W_{a b}$ is convex.

Winkler

- Edges $e=x y$ and $f=u v$ of G are in relation Θ if

$$
d(x, u)+d(y, v) \neq d(x, v)+d(y, u)
$$

Winkler

- Edges $e=x y$ and $f=u v$ of G are in relation Θ if

$$
d(x, u)+d(y, v) \neq d(x, v)+d(y, u) .
$$

- Θ is reflexive and symmetric but need not be transitive. (Consider K $\mathrm{K}_{2,3}$)

Winkler

- Edges $e=x y$ and $f=u v$ of G are in relation Θ if

$$
d(x, u)+d(y, v) \neq d(x, v)+d(y, u) .
$$

- Θ is reflexive and symmetric but need not be transitive. (Consider K K 2,3 .)
- Θ^{*}... transitive closure of Θ.

Winkler

- Edges $e=x y$ and $f=u v$ of G are in relation Θ if

$$
d(x, u)+d(y, v) \neq d(x, v)+d(y, u) .
$$

- Θ is reflexive and symmetric but need not be transitive. (Consider K K 2,3 .)
- Θ^{*}... transitive closure of Θ.

Theorem (Winkler, 1984)

A connected graph G is a partial cube if and only if G is bipartite and $\Theta=\Theta^{*}$.

Chepoi

- A proper cover of G : isometric subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $G_{0}=G_{1} \cap G_{2} \neq \emptyset$.

Chepoi

- A proper cover of G : isometric subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $G_{0}=G_{1} \cap G_{2} \neq \emptyset$.
- The expansion of G with respect to G_{1}, G_{2} is the graph H obtained as follows:

Chepoi

- A proper cover of G : isometric subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $G_{0}=G_{1} \cap G_{2} \neq \emptyset$.
- The expansion of G with respect to G_{1}, G_{2} is the graph H obtained as follows:
- Replace each $v \in G_{1} \cap G_{2}$ by vertices v_{1}, v_{2} and insert the edge $v_{1} v_{2}$.

Chepoi

- A proper cover of G : isometric subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $G_{0}=G_{1} \cap G_{2} \neq \emptyset$.
- The expansion of G with respect to G_{1}, G_{2} is the graph H obtained as follows:
- Replace each $v \in G_{1} \cap G_{2}$ by vertices v_{1}, v_{2} and insert the edge $v_{1} v_{2}$.
- Insert edges between v_{1} and the neighbors of v in $G_{1} \backslash G_{2}$ and between v_{2} and the neighbors of v in $G_{2} \backslash G_{1}$.

Chepoi

- A proper cover of G : isometric subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $G_{0}=G_{1} \cap G_{2} \neq \emptyset$.
- The expansion of G with respect to G_{1}, G_{2} is the graph H obtained as follows:
- Replace each $v \in G_{1} \cap G_{2}$ by vertices v_{1}, v_{2} and insert the edge $v_{1} v_{2}$.
- Insert edges between v_{1} and the neighbors of v in $G_{1} \backslash G_{2}$ and between v_{2} and the neighbors of v in $G_{2} \backslash G_{1}$.
- Insert the edges $v_{1} u_{1}$ and $v_{2} u_{2}$ whenever $v, u \in G_{1} \cap G_{2}$ are adjacent in G.

Three Classical Characterizations

Median Graphs and Inequalities Inequality for Partial Cubes

Convex Excess and Inequalities for Partial Cubes

Three Classical Characterizations

Median Graphs and Inequalities Inequality for Partial Cubes

Convex Excess and Inequalities for Partial Cubes

Three Classical Characterizations

Median Graphs and Inequalities Inequality for Partial Cubes

Convex Excess and Inequalities for Partial Cubes

Convex Excess and Inequalities for Partial Cubes

Three Classical Characterizations

Median Graphs and Inequalities Inequality for Partial Cubes

Chepoi cont'd

Theorem (Chepoi, 1988)

A connected graph G is a partial cube if and only if G can be obtained from K_{1} by a sequence of expansions.

Chepoi cont'd

Theorem (Chepoi, 1988)

A connected graph G is a partial cube if and only if G can be obtained from K_{1} by a sequence of expansions.

Definition

(Isometric) dimension $i(G)$ of a partial cube G is the number of expansions steps in the theorem.

Chepoi cont'd

Theorem (Chepoi, 1988)

A connected graph G is a partial cube if and only if G can be obtained from K_{1} by a sequence of expansions.

Definition

(Isometric) dimension $i(G)$ of a partial cube G is the number of expansions steps in the theorem.
That is, the number of Θ-classes.

Chepoi cont'd

Theorem (Chepoi, 1988)

A connected graph G is a partial cube if and only if G can be obtained from K_{1} by a sequence of expansions.

Definition

(Isometric) dimension $i(G)$ of a partial cube G is the number of expansions steps in the theorem.
That is, the number of Θ-classes.
That is, the smallest d such that G isometrically embeds into Q_{d}.

Other characterizations

Several other characterizations of partial cubes are known.

Other characterizations

Several other characterizations of partial cubes are known.

- Bipartite ℓ_{1}-graphs.

Other characterizations

Several other characterizations of partial cubes are known.

- Bipartite ℓ_{1}-graphs.
- Bipartite graphs whose distance matrix has exactly one positive eigenvalue.

Median graphs

- A median of a triple of vertices u, v, w of a graph G is a vertex z that lies on a shortest u, v-path, on a shortest u, w-path and on a shortest v, w-path.

Median graphs

- A median of a triple of vertices u, v, w of a graph G is a vertex z that lies on a shortest u, v-path, on a shortest u, w-path and on a shortest v, w-path.
- A graph is a median graph if every triple of its vertices has a unique median,

Median graphs

- A median of a triple of vertices u, v, w of a graph G is a vertex z that lies on a shortest u, v-path, on a shortest u, w-path and on a shortest v, w-path.
- A graph is a median graph if every triple of its vertices has a unique median,

Two basic facts

- Trees and hypercubes are median graphs.

Median graphs

- A median of a triple of vertices u, v, w of a graph G is a vertex z that lies on a shortest u, v-path, on a shortest u, w-path and on a shortest v, w-path.
- A graph is a median graph if every triple of its vertices has a unique median,

Two basic facts

- Trees and hypercubes are median graphs.
- Median graphs are partial cubes.

Median graphs and triangle-free graphs

Theorem (Imrich, K., Mulder, 1999)

Let $M(m, n)$ be the complexity of checking whether a graph G with m edges and n vertices is median. Then the complexity of checking whether G is triangle-free is at most $O(M(m, m))$.

Median graphs and triangle-free graphs

Theorem (Imrich, K., Mulder, 1999)

Let $M(m, n)$ be the complexity of checking whether a graph G with m edges and n vertices is median. Then the complexity of checking whether G is triangle-free is at most $O(M(m, m))$.

Theorem (Imrich, K., Mulder, 1999)

Let $T(m, n)$ be the complexity of finding all triangles of a given graph with m edges and n vertices. Then the complexity of checking whether a graph G on n vertices and m edges is a median graph is at most $O(m \log n+T(m \log n, n))$.

Inequality for median graphs

Theorem (K., Mulder, Škrekovski, 1998)
G median graph with n vertices and m edges. Then

$$
2 n-m-i(G) \leq 2
$$

Moreover equality holds if and only if G is Q_{3}-free.

Extension to a subclass of partial Hamming graphs

- A partial Hamming graph is an isometric subgraph of the Cartesian product of complete graphs.

Extension to a subclass of partial Hamming graphs

- A partial Hamming graph is an isometric subgraph of the Cartesian product of complete graphs.
- The (isometric) dimension $i(G)$ of a partial Hamming graph G is the smallest dimension of a Hamming graph into which G isometrically embeds.

Extension to a subclass of partial Hamming graphs

- A partial Hamming graph is an isometric subgraph of the Cartesian product of complete graphs.
- The (isometric) dimension $i(G)$ of a partial Hamming graph G is the smallest dimension of a Hamming graph into which G isometrically embeds.

Theorem (Brešar, K., Škrekovski, 2003)

Let G be a graph with n vertices and m edges that is obtained by a sequence of connected expansions from K_{1}. Then
$2 n-m-i(G) \leq 2$. Moreover equality holds if and only if G is
$C_{t} \square K_{2}$-free $(t \geq 3)$ and K_{4}-free.

The question

Brešar, Imrich, K., Mulder, Škrekovski (JGT, 2002): Is there such an inequality for all partial cubes? In particular, does

$$
2 n-m-2 i(G) \leq 0
$$

hold for any partial cube?

A reason for troubles

$2 n-m-2 i(G) \leq 0$ need not hold

- $P(r, s), 1 \leq s \leq r$, parallelogram hexagonal graph.
- $n=(r+1)(2 s+2)-2$,

$$
m=(r+1)(2 s+1)-2+r(s+1)
$$

$$
i(P(r, s))=2 r+2 s-1
$$

- $2 n-m-2 i(P(r, s))=r s-2(r+s)+3$.

The inequality

- $\mathcal{C}(G)=\{C \mid C$ is a convex cycle of $G\}$. Then the convex excess of G :

$$
c e(G)=\sum_{C \in \mathcal{C}(G)} \frac{|C|-4}{2} .
$$

The inequality

- $\mathcal{C}(G)=\{C \mid C$ is a convex cycle of $G\}$. Then the convex excess of G :

$$
c e(G)=\sum_{C \in \mathcal{C}(G)} \frac{|C|-4}{2} .
$$

- F a Θ-class of G. The F-zone graph, Z_{F} :
- $V\left(Z_{F}\right)=F$,
- f and f^{\prime} adjacent if lie on a common convex cycle of G.

The inequality

- $\mathcal{C}(G)=\{C \mid C$ is a convex cycle of $G\}$. Then the convex excess of G :

$$
c e(G)=\sum_{C \in \mathcal{C}(G)} \frac{|C|-4}{2} .
$$

- F a Θ-class of G. The F-zone graph, Z_{F} :
- $V\left(Z_{F}\right)=F$,
- f and f^{\prime} adjacent if lie on a common convex cycle of G.
- Spread partial cube: all zone graphs are trees.

Theorem

For a partial cube G with n vertices and m edges,

$$
\begin{equation*}
2 n-m-i(G)-c e(G) \leq 2 \tag{1}
\end{equation*}
$$

Theorem

For a partial cube G with n vertices and m edges,

$$
\begin{equation*}
2 n-m-i(G)-c e(G) \leq 2 . \tag{1}
\end{equation*}
$$

Moreover the equality holds if and only G is a spread partial cube.

Proof

Proposition

Let G be a partial cube and let \widetilde{G} be the expansion of G with respect to an isometric cover G_{1}, G_{2}. If C is a convex cycle of G, then its expansion \widetilde{C} is a convex cycle of \widetilde{G}.

Proof

Proposition

Let G be a partial cube and let \widetilde{G} be the expansion of G with respect to an isometric cover G_{1}, G_{2}. If C is a convex cycle of G, then its expansion \widetilde{C} is a convex cycle of \widetilde{G}.

Proposition

The zone graphs of partial cubes are connected.

Proof cont'd

- \widetilde{G} expansion of G with respect to G_{1}, G_{2}. By induction, $2 n-m-i(G)-c e(G) \leq 2$.

Proof cont'd

- \widetilde{G} expansion of G with respect to G_{1}, G_{2}. By induction, $2 n-m-i(G)-c e(G) \leq 2$.
- Set: $G_{0} \underset{\widetilde{G}}{=} G_{1} \cap G_{2}, n_{0}=\left|V\left(G_{0}\right)\right|, m_{0}=\left|E\left(G_{0}\right)\right|, \widetilde{n}=|V(\widetilde{G})|$, $\widetilde{m}=|E(\widetilde{G})|$.

Proof cont'd

- \widetilde{G} expansion of G with respect to G_{1}, G_{2}. By induction, $2 n-m-i(G)-c e(G) \leq 2$.
- Set: $G_{0} \underset{\widetilde{G}}{=} G_{1} \cap G_{2}, n_{0}=\left|V\left(G_{0}\right)\right|, m_{0}=\left|E\left(G_{0}\right)\right|, \tilde{n}=|V(\widetilde{G})|$, $\widetilde{m}=|E(\widetilde{G})|$.
- $\tilde{n}=n+n_{0} \quad$ and $\quad \widetilde{m}=m+n_{0}+m_{0}$.

Proof cont'd

- \widetilde{G} expansion of G with respect to G_{1}, G_{2}. By induction, $2 n-m-i(G)-c e(G) \leq 2$.
- Set: $G_{0}=G_{1} \cap G_{2}, n_{0}=\left|V\left(G_{0}\right)\right|, m_{0}=\left|E\left(G_{0}\right)\right|, \tilde{n}=|V(\widetilde{G})|$, $\widetilde{m}=|E(\widetilde{G})|$.
- $\widetilde{n}=n+n_{0} \quad$ and $\quad \widetilde{m}=m+n_{0}+m_{0} . i(\widetilde{G})=i(G)+1$.
- t : the number of connected components of G_{0}.

Proof cont'd

- \widetilde{G} expansion of G with respect to G_{1}, G_{2}. By induction, $2 n-m-i(G)-c e(G) \leq 2$.
- Set: $G_{0} \underset{\widetilde{G}}{=} G_{1} \cap G_{2}, n_{0}=\left|V\left(G_{0}\right)\right|, m_{0}=\left|E\left(G_{0}\right)\right|, \tilde{n}=|V(\widetilde{G})|$, $\widetilde{m}=|E(\widetilde{G})|$.
- $\widetilde{n}=n+n_{0} \quad$ and $\quad \widetilde{m}=m+n_{0}+m_{0} . i(\widetilde{G})=i(G)+1$.
- t : the number of connected components of G_{0}.
- By the two propositions, \widetilde{G} contains at least $t-1$ convex cross cycles (with respect to G_{1}, G_{2}) of length at least six. So $\operatorname{ce}(\widetilde{G}) \geq \operatorname{ce}(G)+t-1$.

Proof cont'd

- \widetilde{G} expansion of G with respect to G_{1}, G_{2}. By induction, $2 n-m-i(G)-c e(G) \leq 2$.
- Set: $G_{0} \underset{\widetilde{G}}{=} G_{1} \cap G_{2}, n_{0}=\left|V\left(G_{0}\right)\right|, m_{0}=\left|E\left(G_{0}\right)\right|, \tilde{n}=|V(\widetilde{G})|$, $\widetilde{m}=|E(\widetilde{G})|$.
- $\widetilde{n}=n+n_{0} \quad$ and $\quad \widetilde{m}=m+n_{0}+m_{0} . i(\widetilde{G})=i(G)+1$.
- t : the number of connected components of G_{0}.
- By the two propositions, \widetilde{G} contains at least $t-1$ convex cross cycles (with respect to G_{1}, G_{2}) of length at least six. So $\operatorname{ce}(\widetilde{G}) \geq \operatorname{ce}(G)+t-1$.
- $m_{0} \geq n_{0}-t$.

Proof cont'd

$$
\begin{aligned}
& 2 \widetilde{n}-\widetilde{m}-i(\widetilde{G})-\operatorname{ce}(\widetilde{G}) \\
& \leq 2\left(n+n_{0}\right)-\left(m+n_{0}+m_{0}\right)-(i(G)+1)-(c e(G)+t-1) \\
& =(2 n-m-i(G)-c e(G))+\left(n_{0}-m_{0}-t\right) \\
& \leq 2+\left(n_{0}-\left(n_{0}-t\right)-t\right) \\
& =2
\end{aligned}
$$

Proof cont'd

The equality to hold we must have the following three statements at the same time:

- $2 n-m-i(G)-c e(G)=2$ (the contraction G satisfies the equality)

Proof cont'd

The equality to hold we must have the following three statements at the same time:

- $2 n-m-i(G)-c e(G)=2$ (the contraction G satisfies the equality)
- $m_{0}=n_{0}-t$ (G_{0} must be a forest)

Proof cont'd

The equality to hold we must have the following three statements at the same time:

- $2 n-m-i(G)-c e(G)=2$ (the contraction G satisfies the equality)
- $m_{0}=n_{0}-t$ (G_{0} must be a forest)
- $\operatorname{ce}(\widetilde{G})=\operatorname{ce}(G)+t-1$ (among the edges of the zone graph Z_{F} there are exactly $t-1$ cycles of length at least six and, furthermore, every convex cycle of \widetilde{G} contracts to a convex cycle in G)

Proof cont'd

The equality to hold we must have the following three statements at the same time:

- $2 n-m-i(G)-c e(G)=2$ (the contraction G satisfies the equality)
- $m_{0}=n_{0}-t\left(G_{0}\right.$ must be a forest)
- $\operatorname{ce}(\widetilde{G})=\operatorname{ce}(G)+t-1$ (among the edges of the zone graph Z_{F} there are exactly $t-1$ cycles of length at least six and, furthermore, every convex cycle of \widetilde{G} contracts to a convex cycle in G)

The last two conditions imply that Z_{F} is a tree.

Proof cont'd

Proposition

G spread partial cube. Then for any two different Θ-classes F and F^{\prime} there is at most one convex cycle such that it is an edge in both Z_{F} and $Z_{F^{\prime}}$.

Proof cont'd

Proposition

G spread partial cube. Then for any two different Θ-classes F and F^{\prime} there is at most one convex cycle such that it is an edge in both Z_{F} and $Z_{F^{\prime}}$.

Corollary

G spread partial cube, C and C^{\prime} different convex cycles that are edges of Z_{F}. Then these cycles share no edges outside F.

Proof cont'd

- G spread partial cube, $F \Theta$-class F, G_{1} and G_{2} connected components of $G \backslash F$.

Proof cont'd

- G spread partial cube, $F \Theta$-class F, G_{1} and G_{2} connected components of $G \backslash F$.
- By induction $2 n_{1}-m_{1}-i\left(G_{1}\right)-c e\left(G_{1}\right)=2$ and $2 n_{2}-m_{2}-i\left(G_{2}\right)-c e\left(G_{2}\right)=2$.

Proof cont'd

- G spread partial cube, $F \Theta$-class F, G_{1} and G_{2} connected components of $G \backslash F$.
- By induction $2 n_{1}-m_{1}-i\left(G_{1}\right)-c e\left(G_{1}\right)=2$ and $2 n_{2}-m_{2}-i\left(G_{2}\right)-c e\left(G_{2}\right)=2$.
- G_{10} subgraph of G_{1} induced on vertices that have a neighbor in G_{2}, G_{20} the isomorphic subgraph of G_{2}. Let $n_{0}=\left|V\left(G_{10}\right)\right|=\left|V\left(G_{20}\right)\right|$.

Proof cont'd

- G spread partial cube, $F \Theta$-class F, G_{1} and G_{2} connected components of $G \backslash F$.
- By induction $2 n_{1}-m_{1}-i\left(G_{1}\right)-c e\left(G_{1}\right)=2$ and $2 n_{2}-m_{2}-i\left(G_{2}\right)-c e\left(G_{2}\right)=2$.
- G_{10} subgraph of G_{1} induced on vertices that have a neighbor in G_{2}, G_{20} the isomorphic subgraph of G_{2}. Let $n_{0}=\left|V\left(G_{10}\right)\right|=\left|V\left(G_{20}\right)\right|$.
- G_{10} is a forest (it is isomorphic to a subgraph of Z_{F}).

Proof cont'd

- t : the number of connected components of G_{10}.

Proof cont'd

- t : the number of connected components of G_{10}. $C^{(1)}, \ldots, C^{(t-1)}$ convex cycles of length at least six that are edges of Z_{F}.

Proof cont'd

- t : the number of connected components of G_{10}. $C^{(1)}, \ldots, C^{(t-1)}$ convex cycles of length at least six that are edges of Z_{F}.
- $n=n_{1}+n_{2}$ and $m=m_{1}+m_{2}+n_{0}$.

Proof cont'd

- t : the number of connected components of G_{10}. $C^{(1)}, \ldots, C^{(t-1)}$ convex cycles of length at least six that are edges of Z_{F}.
- $n=n_{1}+n_{2}$ and $m=m_{1}+m_{2}+n_{0}$.
- $i(G)=1+i\left(G_{1}\right)+i\left(G_{2}\right)-\left(n_{0}-1\right)-\sum_{j=1}^{t-1} c e\left(C^{(j)}\right)$.

Proof cont'd

- t : the number of connected components of G_{10}. $C^{(1)}, \ldots, C^{(t-1)}$ convex cycles of length at least six that are edges of Z_{F}.
- $n=n_{1}+n_{2}$ and $m=m_{1}+m_{2}+n_{0}$.
- $i(G)=1+i\left(G_{1}\right)+i\left(G_{2}\right)-\left(n_{0}-1\right)-\sum_{j=1}^{t-1} c e\left(C^{(j)}\right)$.
-

$$
\begin{aligned}
\sum_{C \in E\left(Z_{F}\right)} \frac{|C|-2}{2} & =\sum_{C \in E\left(Z_{F}\right)}(c e(C)+1) \\
& =n_{0}-1+\sum_{j=1}^{t-1} c e\left(C^{(j)}\right)
\end{aligned}
$$

Proof cont'd

- $c e(G)=c e\left(G_{1}\right)+c e\left(G_{2}\right)+\sum_{j=1}^{t-1}\left(c e\left(C^{(j)}\right)\right)$.

Proof cont'd

- $c e(G)=c e\left(G_{1}\right)+c e\left(G_{2}\right)+\sum_{j=1}^{t-1}\left(c e\left(C^{(j)}\right)\right)$.

$$
\begin{gathered}
2 n-m-i(G)-c e(G)=2\left(n_{1}+n_{2}\right)-\left(m_{1}+m_{2}+n_{0}\right) \\
-\left(1+i\left(G_{1}\right)+i\left(G_{2}\right)-\left(n_{0}-1\right)-\sum_{j=1}^{t-1} c e\left(C^{(j)}\right)\right) \\
-\left(c e\left(G_{1}\right)+c e\left(G_{2}\right)+\sum_{j=1}^{t-1} c e\left(C^{(j)}\right)\right) \\
=\left(2 n_{1}-m_{1}-i\left(G_{1}\right)-c e\left(G_{1}\right)\right)+\left(2 n_{2}-m_{2}-i\left(G_{2}\right)-c e\left(G_{2}\right)\right)-2 \\
=2+2-2=2 .
\end{gathered}
$$

