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Isometric and convex subgraphs

The distance dG (u, v) between vertices u and v of a graph G
is the number of edges on a shortest u, v -path.

H is an isometric subgraph of G if for any u, v ∈ V (H),
dH(u, v) = dG (u, v).

H is a convex subgraph of a graph G if for any u, v ∈ V (H),
all shortest u, v -paths are in H.

convex ⇒ isometric ⇒ induced
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Partial cubes

The d-cube Qd : or hypercube of dimension d :

V (Qd) = {u = u(1)u(2) . . . u(d) | u(i) ∈ {0, 1}}.
Two vertices are adjacent if the tuples differ in one position.

Partial cubes are isometric subgraphs of hypercubes.

A mapping f : H → G is an isometric embedding (of H into
G ) if f (H) is an isometric subgraph of G .

Hence partial cubes are precisely the graphs that admit
isometric embeddings into hypercubes.
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Partial cubes

Examples of partial cubes

Hypercubes (of course)

Even cycles

Trees

Permutahedron

Median graphs (in particular acyclic cubical complexes)

Benzenoid graphs

Phenylenes

Cartesian products of partial cubes
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Partial cubes

Partial cubes from hyperplane arrangements.

G graph, new vertices its acyclic orientations, orientations
differing by one edge of G .

Integer partitions: vertices = partitions, edges = increment
largest value and decrement some other value (or vice versa).

Flips of triangulations; oriented matroids; media theory.
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Djoković

For an edge ab of a graph G , let

Wab := {u ∈ V (G ) | d(a, u) < d(b, u)} .

Note that V (G ) = Wab ∪Wba for bipartite graphs.

Theorem (Djoković, 1973)

A connected graph G is a partial cube if and only if G is bipartite
and for any edge uv of G the subgraph Wab is convex.
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Winkler

Edges e = xy and f = uv of G are in relation Θ if

d(x , u) + d(y , v) 6= d(x , v) + d(y , u) .

Θ is reflexive and symmetric but need not be transitive.
(Consider K2,3.)

Θ∗ . . . transitive closure of Θ.

Theorem (Winkler, 1984)

A connected graph G is a partial cube if and only if G is bipartite
and Θ = Θ∗.

Convex Excess and Inequalities for Partial Cubes
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Chepoi

A proper cover of G : isometric subgraphs G1 and G2 such
that G = G1 ∪ G2 and G0 = G1 ∩ G2 6= ∅.

The expansion of G with respect to G1, G2 is the graph H
obtained as follows:

Replace each v ∈ G1 ∩ G2 by vertices v1, v2 and insert the
edge v1v2.

Insert edges between v1 and the neighbors of v in G1 \ G2 and
between v2 and the neighbors of v in G2 \ G1.

Insert the edges v1u1 and v2u2 whenever v , u ∈ G1 ∩ G2 are
adjacent in G .
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Chepoi cont’d

Theorem (Chepoi, 1988)

A connected graph G is a partial cube if and only if G can be
obtained from K1 by a sequence of expansions.

Definition

(Isometric) dimension i(G ) of a partial cube G is the number of
expansions steps in the theorem.
That is, the number of Θ-classes.
That is, the smallest d such that G isometrically embeds into Qd .
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Other characterizations

Several other characterizations of partial cubes are known.

Bipartite `1-graphs.

Bipartite graphs whose distance matrix has exactly one
positive eigenvalue.
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Median graphs

A median of a triple of vertices u, v ,w of a graph G is a
vertex z that lies on a shortest u, v -path, on a shortest
u,w -path and on a shortest v ,w -path.

A graph is a median graph if every triple of its vertices has a
unique median,

Two basic facts

Trees and hypercubes are median graphs.

Median graphs are partial cubes.

Convex Excess and Inequalities for Partial Cubes



Outline
Partial Cubes

Three Classical Characterizations
Median Graphs and Inequalities

Inequality for Partial Cubes

Median graphs

A median of a triple of vertices u, v ,w of a graph G is a
vertex z that lies on a shortest u, v -path, on a shortest
u,w -path and on a shortest v ,w -path.

A graph is a median graph if every triple of its vertices has a
unique median,

Two basic facts

Trees and hypercubes are median graphs.

Median graphs are partial cubes.

Convex Excess and Inequalities for Partial Cubes



Outline
Partial Cubes

Three Classical Characterizations
Median Graphs and Inequalities

Inequality for Partial Cubes

Median graphs

A median of a triple of vertices u, v ,w of a graph G is a
vertex z that lies on a shortest u, v -path, on a shortest
u,w -path and on a shortest v ,w -path.

A graph is a median graph if every triple of its vertices has a
unique median,

Two basic facts

Trees and hypercubes are median graphs.

Median graphs are partial cubes.

Convex Excess and Inequalities for Partial Cubes



Outline
Partial Cubes

Three Classical Characterizations
Median Graphs and Inequalities

Inequality for Partial Cubes

Median graphs

A median of a triple of vertices u, v ,w of a graph G is a
vertex z that lies on a shortest u, v -path, on a shortest
u,w -path and on a shortest v ,w -path.

A graph is a median graph if every triple of its vertices has a
unique median,

Two basic facts

Trees and hypercubes are median graphs.

Median graphs are partial cubes.

Convex Excess and Inequalities for Partial Cubes



Outline
Partial Cubes

Three Classical Characterizations
Median Graphs and Inequalities

Inequality for Partial Cubes

Median graphs and triangle-free graphs

Theorem (Imrich, K., Mulder, 1999)

Let M(m, n) be the complexity of checking whether a graph G
with m edges and n vertices is median. Then the complexity of
checking whether G is triangle-free is at most O(M(m,m)).

Theorem (Imrich, K., Mulder, 1999)

Let T (m, n) be the complexity of finding all triangles of a given
graph with m edges and n vertices. Then the complexity of
checking whether a graph G on n vertices and m edges is a median
graph is at most O(m log n + T (m log n, n)).

Convex Excess and Inequalities for Partial Cubes
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Inequality for median graphs

Theorem (K., Mulder, Škrekovski, 1998)

G median graph with n vertices and m edges. Then

2n −m − i(G ) ≤ 2 .

Moreover equality holds if and only if G is Q3-free.
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Extension to a subclass of partial Hamming graphs

A partial Hamming graph is an isometric subgraph of the
Cartesian product of complete graphs.

The (isometric) dimension i(G ) of a partial Hamming graph
G is the smallest dimension of a Hamming graph into which
G isometrically embeds.

Theorem (Brešar, K., Škrekovski, 2003)

Let G be a graph with n vertices and m edges that is obtained by
a sequence of connected expansions from K1. Then
2n −m − i(G ) ≤ 2. Moreover equality holds if and only if G is
Ct2K2-free (t ≥ 3) and K4-free.
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The question

Brešar, Imrich, K., Mulder, Škrekovski (JGT, 2002): Is there such
an inequality for all partial cubes? In particular, does

2n −m − 2i(G ) ≤ 0

hold for any partial cube?
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A reason for troubles
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2n −m − 2i(G ) ≤ 0 need not hold

P(r , s), 1 ≤ s ≤ r , parallelogram hexagonal graph.
n = (r + 1)(2s + 2)− 2,
m = (r + 1)(2s + 1)− 2 + r(s + 1),
i(P(r , s)) = 2r + 2s − 1.
2n −m − 2i(P(r , s)) = rs − 2(r + s) + 3.
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The inequality

C(G ) = {C | C is a convex cycle of G}. Then the convex
excess of G :

ce(G ) =
∑

C∈C(G)

|C | − 4

2
.

F a Θ-class of G . The F -zone graph, ZF :

V (ZF ) = F ,
f and f ′ adjacent if lie on a common convex cycle of G .

Spread partial cube: all zone graphs are trees.
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Theorem

For a partial cube G with n vertices and m edges,

2n −m − i(G )− ce(G ) ≤ 2 . (1)

Moreover the equality holds if and only G is a spread partial cube.
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Proof

Proposition

Let G be a partial cube and let G̃ be the expansion of G with
respect to an isometric cover G1,G2. If C is a convex cycle of G,
then its expansion C̃ is a convex cycle of G̃ .

Proposition

The zone graphs of partial cubes are connected.
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Proof cont’d

G̃ expansion of G with respect to G1,G2. By induction,
2n −m − i(G )− ce(G ) ≤ 2.

Set: G0 = G1 ∩ G2, n0 = |V (G0)|, m0 = |E (G0)|, ñ = |V (G̃ )|,
m̃ = |E (G̃ )|.
ñ = n + n0 and m̃ = m + n0 + m0. i(G̃ ) = i(G ) + 1.

t: the number of connected components of G0.

By the two propositions, G̃ contains at least t − 1 convex
cross cycles (with respect to G1,G2) of length at least six. So
ce(G̃ ) ≥ ce(G ) + t − 1.

m0 ≥ n0 − t.

Convex Excess and Inequalities for Partial Cubes



Outline
Partial Cubes

Three Classical Characterizations
Median Graphs and Inequalities

Inequality for Partial Cubes

Proof cont’d

G̃ expansion of G with respect to G1,G2. By induction,
2n −m − i(G )− ce(G ) ≤ 2.

Set: G0 = G1 ∩ G2, n0 = |V (G0)|, m0 = |E (G0)|, ñ = |V (G̃ )|,
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Proof cont’d

2ñ − m̃ − i(G̃ )− ce(G̃ )

≤ 2(n + n0)− (m + n0 + m0)− (i(G ) + 1)− (ce(G ) + t − 1)

= (2n −m − i(G )− ce(G )) + (n0 −m0 − t)

≤ 2 + (n0 − (n0 − t)− t)

= 2 .
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Proof cont’d

The equality to hold we must have the following three statements
at the same time:

2n −m − i(G )− ce(G ) = 2 (the contraction G satisfies the
equality)

m0 = n0 − t (G0 must be a forest)

ce(G̃ ) = ce(G ) + t − 1 (among the edges of the zone graph
ZF there are exactly t − 1 cycles of length at least six and,
furthermore, every convex cycle of G̃ contracts to a convex
cycle in G )

The last two conditions imply that ZF is a tree.
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Proof cont’d

Proposition

G spread partial cube. Then for any two different Θ-classes F and
F ′ there is at most one convex cycle such that it is an edge in both
ZF and ZF ′ .

Corollary

G spread partial cube, C and C ′ different convex cycles that are
edges of ZF . Then these cycles share no edges outside F .
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Proof cont’d

G spread partial cube, F Θ-class F , G1 and G2 connected
components of G \ F .

By induction 2n1 −m1 − i(G1)− ce(G1) = 2 and
2n2 −m2 − i(G2)− ce(G2) = 2.

G10 subgraph of G1 induced on vertices that have a neighbor
in G2, G20 the isomorphic subgraph of G2. Let
n0 = |V (G10)| = |V (G20)|.
G10 is a forest (it is isomorphic to a subgraph of ZF ).
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Proof cont’d

t: the number of connected components of G10.

C (1), . . . ,C (t−1) convex cycles of length at least six that are
edges of ZF .

n = n1 + n2 and m = m1 + m2 + n0.

i(G ) = 1 + i(G1) + i(G2)− (n0 − 1)−
∑t−1

j=1 ce(C (j)).

∑
C∈E(ZF )

|C | − 2

2
=

∑
C∈E(ZF )

(ce(C ) + 1)

= n0 − 1 +
t−1∑
j=1

ce(C (j)) .
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Proof cont’d

ce(G ) = ce(G1) + ce(G2) +
∑t−1

j=1(ce(C (j))).

2n −m − i(G )− ce(G ) = 2(n1 + n2)− (m1 + m2 + n0)

−
(

1 + i(G1) + i(G2)− (n0 − 1)−
t−1∑
j=1

ce(C (j))
)

−
(

ce(G1) + ce(G2) +
t−1∑
j=1

ce(C (j))
)

= (2n1−m1− i(G1)−ce(G1))+(2n2−m2− i(G2)−ce(G2))−2

= 2 + 2− 2 = 2 .
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