Properties of  $\theta$  00000

Open Questions o

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

# A Formal Definition of Orthology Using the Relation $\theta$

#### Marc Hellmuth

Bioinformatics Group Department of Computer Science University Leipzig

joint work with: Nicolas Wieseke, Maribel Hernandez-Rosales and Peter F. Stadler

February 16, 2011

Properties of  $\theta$  00000

Open Questions o

## Reconciliation Tree Π



A reconciliation tree  $\Pi$  is a rooted, binary tree (V, E) with vertex labeling  $e(v) \in \{$  duplication, speciation, loss, none $\}$  and  $s(v) \subseteq \{1, ..., n\}$  such that for all vertices  $v, w \in V$  hold:

- 1. For the root vertex r holds  $s(r) = \{1, ..., n\}$
- 2.  $v \notin L(\Pi) \Leftrightarrow e(v) \in \{\text{dupl., spec.}\}\$  $v \in L(\Pi) \Leftrightarrow e(v) \in \{\text{loss, none}\}\$

3. 
$$e(v) = \text{duplication} \Leftrightarrow$$
  
 $s(v.1) = s(v.2) = s(v)$ 

4.  $e(v) = \text{speciation} \Leftrightarrow \text{there exists a}$ bipartition  $s(v) = s(v.1) \cup s(v.2)$ .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

5. 
$$e(v) = \text{none} \Rightarrow |s(v)| = 1$$

Properties of  $\theta$  00000

Open Questions o

# Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x,y)) = speciation.

Properties of  $\theta$  00000

Open Questions o

# Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x,y)) = speciation.

Properties of  $\theta$  00000

Open Questions o

# Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x, y)) = speciation.

Properties of  $\theta$  00000

Open Questions o

# Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x,y)) = speciation.

Properties of  $\theta$  00000

Open Questions o

# Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x,y)) = speciation.

Properties of  $\theta$  00000

Open Questions o

# Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x, y)) = speciation.

Two genes  $x \in S_i$  and  $y \in S_j$  are in relation  $\theta$  if

$$\mathit{lca}(x,y) \leq \mathit{lca}(x,g')$$
 for all  $g' \in S_j$ 

and

$$\mathit{lca}(x,y) \leq \mathit{lca}(g',y) ext{ for all } g' \in S_i.$$

If in addition e(lca(x,y)) = speciation then we write:  $x\theta^*y$ .

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Properties of  $\theta$  00000

Open Questions o

## Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x, y)) = speciation.

Two genes  $x \in S_i$  and  $y \in S_j$  are in relation  $\theta$  if

$$\mathit{lca}(x,y) \leq \mathit{lca}(x,g')$$
 for all  $g' \in S_j$ 

and

$$\mathit{lca}(x,y) \leq \mathit{lca}(g',y)$$
 for all  $g' \in \mathsf{S}_i.$ 

If in addition e(lca(x,y)) = speciation then we write:  $x\theta^*y$ .

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Properties of  $\theta$  00000

Open Questions o

# Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x, y)) = speciation.

Two genes  $x \in S_i$  and  $y \in S_j$  are in relation  $\theta$  if

$$\mathit{lca}(x,y) \leq \mathit{lca}(x,g')$$
 for all  $g' \in S_j$ 

and

$$\mathit{lca}(x,y) \leq \mathit{lca}(g',y) ext{ for all } g' \in S_i.$$

If in addition e(lca(x,y)) = speciation then we write:  $x\theta^*y$ .

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Properties of  $\theta$  00000

Open Questions o

# Orthology and Relation $\theta$



Two genes  $x \in S_i$  and  $y \in S_j$  are orthologous if e(lca(x, y)) = speciation.

Two genes  $x \in S_i$  and  $y \in S_j$  are in relation  $\theta$  if

$$\mathit{lca}(x,y) \leq \mathit{lca}(x,g') ext{ for all } g' \in \mathsf{S}_j$$

and

$$\mathit{lca}(x,y) \leq \mathit{lca}(g',y) ext{ for all } g' \in \mathsf{S}_i.$$

If in addition e(lca(x,y)) = speciation then we write:  $x\theta^*y$ .

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

#### Lemma

If x and y are orthologous in  $\Pi$  then  $x \theta y$ . Genes x and y are orthologous in  $\Pi$  without losses if and only if  $x \theta y$ , i.e.  $\theta = \theta^*$ .

Properties of  $\theta$ •0000 Open Questions o

## Properties of $\theta$



## Lemma

Given an arbitrary reconciliation tree  $\Pi$  and two vertices  $x, x' \in S_i$  with  $x \theta Y = \{y_1, \dots, y_n\}$  and  $x' \theta y_i$  with  $y_i \in Y$ . Then it holds  $x' \theta Y$ .

Properties of  $\theta$ •0000 Open Questions o

## Properties of $\theta$



## Lemma

Given an arbitrary reconciliation tree  $\Pi$  and two vertices  $x, x' \in S_i$  with  $x \theta Y = \{y_1, \dots, y_n\}$  and  $x' \theta y_i$  with  $y_i \in Y$ . Then it holds  $x' \theta Y$ .

Properties of  $\theta$ •0000 Open Questions o

## Properties of $\theta$



## Lemma

Given an arbitrary reconciliation tree  $\Pi$  and two vertices  $x, x' \in S_i$  with  $x \theta Y = \{y_1, \dots, y_n\}$  and  $x' \theta y_i$  with  $y_i \in Y$ . Then it holds  $x' \theta Y$ .

Properties of  $\theta$ 00000 Open Questions o

## Properties of $\theta$

#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Then for all vertices  $x \in S_i$  exists a vertex  $y \in S_i$  such that  $x \theta y$ .



Properties of  $\theta$ 

Open Questions o

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $x \in S_i$  and  $y \in S_j$  such that  $x \theta y$  and let v = lca(x, y). Then it holds for all  $w_1, w_2 \in L(\Pi)$  with  $w_1 \leq v.1$  and  $w_2 \leq v.2$  that  $w_1 \theta w_2$ .

Properties of  $\theta$ 00000 Open Questions o

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $x \in S_i$  and  $y \in S_j$  such that  $x \theta y$  and let v = lca(x, y). Then it holds for all  $w_1, w_2 \in L(\Pi)$  with  $w_1 \leq v.1$  and  $w_2 \leq v.2$  that  $w_1 \theta w_2$ .

Properties of  $\theta$ 00000 Open Questions o

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $x \in S_i$  and  $y \in S_j$  such that  $x \theta y$  and let v = lca(x, y). Then it holds for all  $w_1, w_2 \in L(\Pi)$  with  $w_1 \leq v.1$  and  $w_2 \leq v.2$  that  $w_1 \theta w_2$ .

Properties of  $\theta$ 00000 Open Questions o

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $y \in S_j$  be an arbitrary, but fixed vertex of  $L(\Pi)$  and and let  $z \in S_i$  be a fixed vertex of  $L(\Pi)$  with  $y\theta z$ . Let  $X' = \{x \in S_i \mid x\theta y\}$  and  $X'' = \{x \in S_i \mid x\theta z\}$ . Then it holds  $X' \subseteq X''$  or  $X'' \subseteq X'$ .

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Properties of  $\theta$ 00000 Open Questions o

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $y \in S_j$  be an arbitrary, but fixed vertex of  $L(\Pi)$  and and let  $z \in S_i$  be a fixed vertex of  $L(\Pi)$  with  $y\theta z$ . Let  $X' = \{x \in S_i \mid x\theta y\}$  and  $X'' = \{x \in S_i \mid x\theta z\}$ . Then it holds  $X' \subseteq X''$  or  $X'' \subseteq X'$ .

・ロト・西ト・ヨト・ヨー もくの

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $y, \tilde{y} \in S_j$  be arbitrary, but fixed vertices of  $L(\Pi)$  and and let  $z, \tilde{z} \in S_i$  be fixed vertices of  $L(\Pi)$  with  $y \theta z$  and  $\tilde{y} \theta \tilde{z}$ . Let  $X' = \{x \in S_i \mid x \theta y\}$  and  $X'' = \{x \in S_i \mid x \theta z\}$ . Let  $\widetilde{X} = \{x \in S_i \mid x \theta \tilde{y}\}$ and  $\widetilde{\widetilde{X}} = \{x \in S_i \mid x \theta \tilde{z}\}$ . If  $X' \subseteq X''$  then  $\widetilde{X} \subseteq \widetilde{\widetilde{X}}$  and if  $X'' \subseteq X'$  then  $\widetilde{\widetilde{X}} \subseteq \widetilde{X}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Open Questions o

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $y, \tilde{y} \in S_j$  be arbitrary, but fixed vertices of  $L(\Pi)$  and and let  $z, \tilde{z} \in S_i$  be fixed vertices of  $L(\Pi)$  with  $y \theta z$  and  $\tilde{y} \theta \tilde{z}$ . Let  $X' = \{x \in S_i \mid x \theta y\}$  and  $X'' = \{x \in S_i \mid x \theta z\}$ . Let  $\widetilde{X} = \{x \in S_i \mid x \theta \tilde{y}\}$ and  $\widetilde{\widetilde{X}} = \{x \in S_i \mid x \theta \tilde{z}\}$ . If  $X' \subseteq X''$  then  $\widetilde{X} \subseteq \widetilde{\widetilde{X}}$  and if  $X'' \subseteq X'$  then  $\widetilde{\widetilde{X}} \subseteq \widetilde{X}$ .

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Open Questions o

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $y, \tilde{y} \in S_j$  be arbitrary, but fixed vertices of  $L(\Pi)$  and and let  $z, \tilde{z} \in S_i$  be fixed vertices of  $L(\Pi)$  with  $y \theta z$  and  $\tilde{y} \theta \tilde{z}$ . Let  $X' = \{x \in S_i \mid x \theta y\}$  and  $X'' = \{x \in S_i \mid x \theta z\}$ . Let  $\widetilde{X} = \{x \in S_i \mid x \theta \tilde{y}\}$ and  $\widetilde{\widetilde{X}} = \{x \in S_i \mid x \theta \tilde{z}\}$ . If  $X' \subseteq X''$  then  $\widetilde{X} \subseteq \widetilde{\widetilde{X}}$  and if  $X'' \subseteq X'$  then  $\widetilde{\widetilde{X}} \subseteq \widetilde{X}$ .

・ロト・日本・日本・日本・日本・日本

Open Questions o

## Properties of $\theta$



#### Lemma

Given a reconciliation tree  $\Pi$  without losses. Let  $y, \tilde{y} \in S_j$  be arbitrary, but fixed vertices of  $L(\Pi)$  and and let  $z, \tilde{z} \in S_l$  be fixed vertices of  $L(\Pi)$  with  $y \theta z$  and  $\tilde{y} \theta \tilde{z}$ . Let  $X' = \{x \in S_i \mid x \theta y\}$  and  $X'' = \{x \in S_i \mid x \theta z\}$ . Let  $\widetilde{X} = \{x \in S_i \mid x \theta \tilde{y}\}$ and  $\widetilde{\widetilde{X}} = \{x \in S_i \mid x \theta \tilde{z}\}$ . If  $X' \subseteq X''$  then  $\widetilde{X} \subseteq \widetilde{\widetilde{X}}$  and if  $X'' \subseteq X'$  then  $\widetilde{\widetilde{X}} \subseteq \widetilde{X}$ .

▲□▶▲御▶▲臣▶▲臣▶ 臣 のへで

#### What we know:

 $\Pi \implies \theta$  with particular properties.

## **Open Questions:**

Given a binary relation *R*. Does there exist a reconciliation tree  $\Pi$  such that  $R = \theta$ ? Does there exist a reconciliation tree  $\Pi$  without losses such that  $R = \theta$ ?

#### Future Plans:

- 1. Given evolutionary distance matrix *D* then we have to compute the binary relation *R* in a good way.
- 2. For given *R* find  $\theta$  such that  $d(R, \theta) \rightarrow \min$
- 3. Use binary relation  $\theta$  to construct  $\Pi$ .

Properties of  $\theta$  00000

Open Questions o

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQ@

Thank you for your attention.