Twisted Cartesian Products

Lydia Ostermeier

Bioinformatik Leipzig
February 15, 2011

Introduction

- Given: graph G similar to a Cartesian product

Introduction

- Given: graph G similar to a Cartesian product
- G has non-trivial δ^{*}

Introduction

- Given: graph G similar to a Cartesian product
- G has non-trivial δ^{*}
- Aim:
- find the underlying Cartesian product graph
- reconstruct "approximate" factors

Introduction

- Given: graph G similar to a Cartesian product
- G has non-trivial δ^{*}
- Aim:
- find the underlying Cartesian product graph

Introduction

- Given: graph G similar to a Cartesian product
- G has non-trivial δ^{*}
- Aim:
- find the underlying Cartesian product graph, or
- reconstruct "approximate" factors

Introduction

Introduction

Outline

1. Basics
2. Idea
3. (proven) Facts and (unproven) Conjectures

Graphs

Graph $G=(V, E)$

- here: finite, undirected, simple graphs

Graphs

Graph $G=(V, E)$

- here: finite, undirected, simple graphs

The Cartesian Product

$$
G_{1}=\left(V_{1}, E_{1}\right) G_{2}=\left(V_{2}, E_{2}\right)
$$

C

The Cartesian Product

$$
G_{1}=\left(V_{1}, E_{1}\right) G_{2}=\left(V_{2}, E_{2}\right)
$$

$$
V\left(G_{1} \square G_{2}\right)=V_{1} \times V_{2}
$$

C

(1)
(1)
© 1
(2)
(12)
© 2

The Cartesian Product

$$
G_{1}=\left(V_{1}, E_{1}\right) G_{2}=\left(V_{2}, E_{2}\right)
$$

$$
\begin{aligned}
V\left(G_{1} \square G_{2}\right)= & V_{1} \times V_{2} \\
E\left(G_{1} \square G_{2}\right)= & \left\{\left[\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right] \mid\left[u_{1}, v_{1}\right] \in E_{1}, u_{2}=v_{2},\right. \text { or } \\
& \left.u_{1}=v_{1},\left[u_{2}, v_{2}\right] \in E_{2}\right\} .
\end{aligned}
$$

C

The Relation δ

Two edges e and $f \in E(G)$ are in relation δ
(ii) e and f are opposite edges of a square
(iii) e and f are incident and there is no cordless square containing them

The Relation δ

Two edges e and $f \in E(G)$ are in relation δ
(i) $e=f$
e and f are opposite edges of a square
e and f are incident and there is no cordless square containing them

The Relation δ

Two edges e and $f \in E(G)$ are in relation δ
(i) $e=f$
(ii) e and f are opposite edges of a square

e and f are incident and there is no cordless square

 containing them

The Relation δ

Two edges e and $f \in E(G)$ are in relation $\delta \Longleftrightarrow$
(i) $e=f$
(ii) e and f are opposite edges of a square
(iii) e and f are incident and there is no cordless square containing them

Theorem (W.Imrich, J.Žerovnik¹)

The relation corresponding to the unique prime factorization of a connected graph G is the convex hull of δ.

[^0]if δ^{*} is convex $\Rightarrow \delta^{*}$ is a product relation ${ }^{2}$

${ }^{2} \delta^{*}$: transitive closure of δ
if δ^{*} is convex $\Rightarrow \delta^{*}$ is a product relation ${ }^{2}$

${ }^{2} \delta^{*}$: transitive closure of δ
if δ^{*} is convex $\Rightarrow \delta^{*}$ is a product relation ${ }^{2}$

${ }^{2} \delta^{*}$: transitive closure of δ

What if δ^{*} is not convex?

A prime graph

A prime graph with 2 different δ^{*}-equivalence classes

An Idea

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Given: a graph G with nontrivial δ^{*} :

- how to find the underlying Cartesian product graph?
- how to reconstruct "approximate" factors?

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

Properties Of The New Graph

1. "preserves" δ^{*}-equivalence classes
2. isomorphic connected components

Properties Of The New Graph

1. "preserves" δ^{*}-equivalence classes
2. isomorphic connected components

Properties Of The New Graph

1. "preserves" δ^{*}-equivalence classes
2. isomorphic connected components

Properties Of The New Graph

1. "preserves" δ^{*}-equivalence classes
2. isomorphic connected components

Properties Of The New Graph

1. "preserves" δ^{*}-equivalence classes
2. isomorphic connected components

Observation

Observation

G^{\prime} is a graph bundle over basegraph B with fiber F.

Observation

pumping up F

Some Facts...

 ...and Conjectures
Assumptions

- Consider 2 adjacent connected components of an δ^{*}-e.c. of a graph, i.e.
- consider graph G with nontrivial δ^{*} such that $\exists \varphi$ e.c. of δ^{*} with exactly 2 induced connected components:
$G_{\varphi}(u) \neq G_{\varphi}(v)$
- $\bar{\varphi}:=\bigcup_{\varphi^{\prime} \neq \varphi} \varphi^{\prime}$

Facts 1

- If two vertices $x, y \in V\left(G_{\varphi}(v)\right)$ belong to the same connected component of $G_{\bar{\varphi}}$, then there exists an automorphism $\pi: G_{\varphi}(v) \rightarrow G_{\varphi}(v)$ with $\pi(x)=y$.
- If each automorphism of a connected component $G_{\varphi}(v)$ that maps vertices into the same connected components of $G_{\bar{\varphi}}$ has no fixed points, all connected components of $G_{\bar{\varphi}}$ are isomorphic.

Facts 1

- If two vertices $x, y \in V\left(G_{\varphi}(v)\right)$ belong to the same connected component of $G_{\bar{\varphi}}$, then there exists an automorphism $\pi: G_{\varphi}(v) \rightarrow G_{\varphi}(v)$ with $\pi(x)=y$.
- If each automorphism of a connected component $G_{\varphi}(v)$ that maps vertices into the same connected components of $G_{\bar{\phi}}$ has no fixed points, all connected components of $G_{\bar{\varphi}}$ are isomorphic.

Conjectures 1

- define relation A on the vertex set $V(G): x A y \Leftrightarrow$

1. $y \in V\left(G_{\varphi}(x)\right) \cap V\left(G_{\bar{\varphi}}(x)\right)$ and
2. there exists an automorphism π on $G_{\varphi}(x)$ with $\pi(x)=y$ that has fixed points, i.e., there is a vertex $v \in V\left(G_{\varphi}(x)\right)$ with $\pi(v)=v$.

- compute quotient graph G / A :

1. $V(G / A)=\left\{A_{i} \mid A_{i}\right.$ is an equivalence class of $\left.A\right\}$
2. $\left(A_{i}, A_{j}\right) \in E(G / A)$, whenever there is an edge $(x, y) \in E(G)$ with $x \in A_{i}$ and $y \in S_{j}$.

Conjectures 1

- define relation A on the vertex set $V(G): x A y \Leftrightarrow$

1. $y \in V\left(G_{\varphi}(x)\right) \cap V\left(G_{\bar{\varphi}}(x)\right)$ and
2. there exists an automorphism π on $G_{\varphi}(x)$ with $\pi(x)=y$ that has fixed points, i.e., there is a vertex $v \in V\left(G_{\varphi}(x)\right)$ with $\pi(v)=v$.

- compute quotient graph G / A :

1. $V(G / A)=\left\{A_{i} \mid A_{i}\right.$ is an equivalence class of A$\}$
2. $\left(A_{i}, A_{j}\right) \in E(G / A)$, whenever there is an edge $(x, y) \in E(G)$ with $x \in A_{i}$ and $y \in S_{j}$.

Conjectures 1

- define relation A on the vertex set $V(G): x A y \Leftrightarrow$

1. $y \in V\left(G_{\varphi}(x)\right) \cap V\left(G_{\bar{\varphi}}(x)\right)$ and
2. there exists an automorphism π on $G_{\varphi}(x)$ with $\pi(x)=y$ that has fixed points, i.e., there is a vertex $v \in V\left(G_{\varphi}(x)\right)$ with $\pi(v)=v$.

- compute quotient graph G / A :

1. $V(G / A)=\left\{A_{i} \mid A_{i}\right.$ is an equivalence class of A$\}$
2. $\left(A_{i}, A_{j}\right) \in E(G / A)$, whenever there is an edge $(x, y) \in E(G)$ with $x \in A_{i}$ and $y \in S_{j}$.

Conjecture

- G has nontrivial $\delta^{*} \Rightarrow G / A$ has nontrivial δ^{*},
- G / A has the "same" δ^{*}-equivalence classes as G.

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

Facts 2

- There exists a connected subgraph H of $G_{\varphi}(v)$, that contains each connected component of $G_{\bar{\phi}}$ exactly once.

```
Let T be a spanning tree of H. Then there exists a subgraph
T' of G}\mp@subsup{G}{\varphi}{}(u)\mathrm{ , that is isomorphic to }T\mathrm{ , with the same properties.
If each automornhism of a connected comnonent G}\mp@subsup{G}{0}{}(v)\mathrm{ that
maps vertices into the same connected components of G}\mp@subsup{G}{\overline{p}}{
has no fixed points, then
```

$$
V\left(G_{\varphi}(v)\right)=\bigcup_{w \in V(T)}\left\{\pi_{i}(w)\left|\pi_{i}\right|_{G_{\bar{\varphi}}(x)}: G_{\bar{\varphi}}(x) \rightarrow G_{\bar{\varphi}}(x)\right\}
$$

- If $\left|\left\{j \mid\left(v, \pi_{j}(w)\right) \in E(G)\right\}\right| \leq 1 \forall v, w \in V(T), v \neq w \Rightarrow$ $\left(G, p_{\bar{\varphi}}, B_{\bar{\varphi}}\right)$ is a graph bundle.

Facts 2

- There exists a connected subgraph H of $G_{\varphi}(v)$, that contains each connected component of $G_{\bar{\phi}}$ exactly once.
- Let T be a spanning tree of H. Then there exists a subgraph T^{\prime} of $G_{\varphi}(u)$, that is isomorphic to T, with the same properties.

$$
V\left(G_{\varphi}(v)\right)=\bigcup\left\{\pi_{i}(w)\left|\pi_{i}\right|_{G_{\bar{\varphi}}(x)}: G_{\bar{\varphi}}(x) \rightarrow G_{\bar{\varphi}}(x)\right\} .
$$

$$
\left(G, p_{\bar{\varphi}}, B_{\bar{\varphi}}\right) \text { is a graph bundle. }
$$

Facts 2

- There exists a connected subgraph H of $G_{\varphi}(v)$, that contains each connected component of $G_{\bar{\phi}}$ exactly once.
- Let T be a spanning tree of H. Then there exists a subgraph T^{\prime} of $G_{\varphi}(u)$, that is isomorphic to T, with the same properties.
- If each automorphism of a connected component $G_{\varphi}(v)$ that maps vertices into the same connected components of $G_{\bar{\varphi}}$ has no fixed points, then

$$
V\left(G_{\varphi}(v)\right)=\bigcup_{w \in V(T)}\left\{\pi_{i}(w)\left|\pi_{i}\right|_{G_{\bar{\varphi}}(x)}: G_{\bar{\varphi}}(x) \rightarrow G_{\bar{\varphi}}(x)\right\} .
$$

($G, p_{\bar{\varphi}}, B_{\bar{\varphi}}$) is a graph bundle.

Facts 2

- There exists a connected subgraph H of $G_{\varphi}(v)$, that contains each connected component of $G_{\bar{\phi}}$ exactly once.
- Let T be a spanning tree of H. Then there exists a subgraph T^{\prime} of $G_{\varphi}(u)$, that is isomorphic to T, with the same properties.
- If each automorphism of a connected component $G_{\varphi}(v)$ that maps vertices into the same connected components of $G_{\bar{\phi}}$ has no fixed points, then

$$
V\left(G_{\varphi}(v)\right)=\bigcup_{w \in V(T)}\left\{\pi_{i}(w)\left|\pi_{i}\right|_{G_{\bar{\varphi}}(x)}: G_{\bar{\varphi}}(x) \rightarrow G_{\bar{\varphi}}(x)\right\}
$$

- If $\left|\left\{j \mid\left(v, \pi_{j}(w)\right) \in E(G)\right\}\right| \leq 1 \forall v, w \in V(T), v \neq w \Rightarrow$ ($G, p_{\bar{\varphi}}, B_{\bar{\varphi}}$) is a graph bundle.

Conjecture 2

Conjecture

By some special "edge switching" one can construct a graph G^{\prime} from G / A that is a Cartesian product (or at least a graph bundle).

Construct A New Graph

1. merge certain vertices
2. switch some edges

Construct A New Graph

1. merge certain vertices
2. switch some edges

- Proofs?
- How to define/ formalize those "switchings"?
- How to extend this to the entire graph?
.....

Thanks to Peter Stadler and Marc Hellmuth!

Thanks to Peter Stadler and Marc Hellmuth!

Thank you for your attention!

[^0]: ${ }^{1}$ Imrich, W. J. Žerovnik: Factoring Cartesian-product graphs. J. Graph Theory, 18(6):557-567, 1994.

