Robustness and Modularity in Metabolic Networks

Alexander Ullrich

Bioinformatics University of Leipzig

Bled, February 17

Metabolic Networks

Metabolic Networks

Robustness

- Ability to function despite changes
- Genetic Changes: Mutations,...
- Epigenetic Changes: Fluctuations in Molecule concetrations
- Complex Systems are highly robust
- Scale-free Networks are particularly robust

Modularity

- Module: (structural) subsystem with distinct function
- Key organizing principle of biological networks
- High Clustering Coefficient suggests Modularity
- However, Origin and Preservation of Modularity not understood
- Changing Goals or Environments

Motivation

- Biological systems develop desired properties
 - Robustness, Flexibility, Modularity, Evolvability, ...
 - Properties are connected
- Well studied, but their emergence is less well understood
 - · Investigate the evolution of metabolic networks
 - Analyse network structure and metabolic functions
- Answers beyond analyzing real-world data
- \rightarrow a multi-scale computational model of early metabolism
- \rightarrow appropriate measures for network properties

Simulation

- Protocellular entity
- Bag of ribozymes
- Algebraic chemistry model
- Exchange of molecules with the environment

Simulation - Overview

Simulation - Growth

Simulation - Stochastic Network Generator

Faulon, J-L, (2001) J Chem Inf Comput Sci 41:894-908

General network analysis

- Connectivity Distribution
 - small vs big
 - early vs evolved
- Clustering Coefficient, Centrality, Entropy, ...
 - simulated vs real world

after 10 Generations

after 50 Generations

after 100 generations

after 250 generations

after 500 generations

Changing Environment - after 100 generations

after 250 generations

after 500 generations

after 750 generations

after 1000 generations

Metabolic network analysis

We have sets of edges forming meaningful complex entities $$\downarrow$$ pathways

- number of pathways \rightarrow flexibilty
- change in case of single/multiple knockouts \rightarrow robustness
- number of acceptable knockouts \rightarrow robustness

Metabolic Pathway Analysis

Metabolic Pathway Analysis

Knockout effects

single

multiple

$R_1 - \frac{\sum_{i=1}^r z^i}{\sum_{i=1}^r z^i}$
r + z
$R_3(k) = \frac{\sum_{i=1}^{3(k)} z^i}{(k)}$
s(k) * z

depletion $R_2 = \frac{1}{2}$ overall $R_3 (\leq 1)$

=	$\sum_{i=1}^{n} R_1^i$
	n K
$(\leq$	$K)=\sum R_3(k)p_k$
	k=1

Example system		Number of reactions	Number of elementary modes	$R_{1}(1)$	$R_{1}(2)$	$R_1(3)$	$R_1(\leq 3)$
1	<	4	2	1/2 = 0.5	$1/6\!\approx\!0.167$	0	0.414
2	$\overline{}$	4	2	1/2 = 0.5	1/4 = 0.25	1/8 = 0.125	0.436
3	\rightarrow	4	2	3/8 = 0.375	$1/12\approx 0.083$	0	0.302
4	\rightarrow	4	2	1/4 = 0.25	0	0	0.189
5	\rightarrow	8	2	$7/16{\approx}0.438$	3/8 = 0.375	$5/16 \approx 0.313$	0.418
6	$\langle \rightarrow \rightarrow \rightarrow$	8	2	1/2 = 0.5	3/14≈0.214	$1/14\approx 0.071$	0.416
7		5	4	13/20 = 0.65	3/8 = 0.375	7/40 = 0.175	0.573
8		5	3	2/3≈0.667	2/5 = 0.4	1/5 = 0.2	0.592

Minimal Knockout sets

Knockout set size distribution \rightarrow Robustness (bigger is better)

after 10 generations

after 20 generations

after 50 generations

after 100 generations

after 250 generations

after 500 generations

Changing Environment - after 10 generations

after 50 generations

after 250 generations

after 500 generations

after 1000 generations

Chemical Organizations

Self-maintaining and closed sets of molecules and reactions $$\downarrow$$ chemical organizations

- Hierarchies of organizations
- Shape of Hierarchies \rightarrow robustness
- Size distribution of organizations \rightarrow robustness, modularity

Chemical Organizations

Level Size Distribution - after 500 generations

Chemical Organizations

0.4 0.3 frequency 0.2 0.1 $^{0}\dot{0}$ 2 3 4 5 6 organizations per level

42 / 51

Changing Environment - after 500 generations

Organization Size Distribution - after 500 generations

Work in Progress

Flux barrier analysis

- linear optimization: EMs modeled as system of linear equations
- constraints: limits on reactions, exclusion of combinations of EMs
- barrier tree

Reaction barrier analysis

- linear optimization: stoichiometrix matrix
- constraints: limits on reactions, exclusion of combinations of reactions
- barrier tree

Flux similarity

- Compute pairwise similarity of elementary modes
- similarity between metabolites (in+out / all) through topological indices
- similarity between enzymes/reactions by comparing transition state structure

Conclusion

- Summary
 - Structural and Functional measures for Robustness and Modularity
 - Follow the Law (Connectivity Distribution)
 - Size Matters (Knockout set Size)
 - Shape too (Chemical organization Hierarchy)
- Outlook
 - Investigate single networks (flux barriers, flux similarity)
 - Different scenarios (Horizontal Gene Transfer)
 - Structural modularity (Clustering Coefficient)

Acknowledgements

Christoph Flamm

Peter Stadler Konstantin Klemm Martin Mann Markus Rohrschneider Peter Dittrich Dennis Goerlich