

universität wien

A genome wide RNAz screen for structured RNA elements in mouse

Bernhard Thiel, Andrea Tanzer, Ivo Hofacker

Overview

- Introduction RNAz, LocARNA
- Our pipeline
- Preliminary results

- Uses alifold
- A machine learning approach
- Based on
 - Structure Conservation Index
 - Thermodynamic Stability

Washietl et al. Proc. Natl. Acad. Sci. U.S.A. 2005. 102: 2454-2459

RNAz

Introduction »

>echTel1_1_359/80-200
AGGAC - GUGUUUAGGACUGUAGG CAGCACUUGAUACCAACCGAGCUAUCUAUGUCCUAGCC - UAUGUCAAAGGCUUGUGUUGUGUUGUGAUCGCUGGGUUUAAGAAGUGCA
.(.((-(((((.((((((((((((((((((((((((((
>bosTau2_1_371/80-200
AUCUGCUUAUUUAAGGAUUUAGGCAGCACUUGAUACUAACCGAGCUAUCUAUGUCCAAGCCUUAUGUCAGAGGCCUGUGAUGUGUGUG
$\dots (((((((\dots,\dots,)))))^{}))(((((((((((((((((((((((((((((((($
>canFam2_1_358/80-200
AUGUGCUU - UUUAAGGAUUUAGG CAGCACUUGAUACCAAACCGAGCUAUCUAUAUCCUAGCCUUGUGCCAAAGGCUUGUGAUGUGUUGUGAUAGCUGGGUUUAAGAAGUGCA
.(((((-((((((((((()))))))))((((((((
>oryCun1_1_358/80-200
AUGUGUAUUUUUAAAGAUGUAAACUUGGUCAGCACUUGAUACCGAGCUAUCUGCAUCCUGGUCUUGUGUCAAAGGCUUGGGAUGUGUGUG
$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (((((((((((((((((((((($
>mm7_1_345/80-200
GGGUGUGUAUUUAAGGAUUUAGAUUUGACCAGCACUUGAUACCGAGCUAUCUGUAUCCUCGUCUUGU - UUAAAGGCUUGUGAUAUGCUGUGGUAGUUGGGUUGCAGAAGUGCG
$.(((\ldots,((((((\ldots,)))))))\ldots))).(((((((((((((($
>rn3_1_343/80-200
AUGUGU UUUAAGGAUUUAGAUGUGACCAGCACUUGAUACCGAGCUAUCUAU
$\dots \dots $
>consensus
AUGUGUGU_UUUAAGGAUUUAGACAGCACUUGAUACCAACCGAGCUAUCUAUAUCCUAGCCUUGUGUGAAAGGCUUGUGAUGUGUGUG
$\dots \dots $

RNA

Prediction:

Introduction »

RNAz 2.0

- Dinucleotide shuffled z-scores
 Windows > 400nt
- >10 species

Gruber et al. Pac Symp Biocomput. 2010:69-79.

Introduction »

Challenges

- Highly dependent on alignment quality

Introduction »

LocARNA

- Structure based multiple sequence alignment
- LocARNA-P
 - Column wise reliabilities for boundary prediction

Flowchart

Our Pipeline »

Preliminary results » False Positive Rate

- Reduced False Positive Rate

Approach	FDR	Method
Preliminar experiment 1	58%	MultiZ alignments; Multiperm; Low confidence results; Alignments filtered; Chr 11
Preliminar Experiment 2	72%	MultiZ alignments; Multiperm; Low confidence results; Alignments un filtered; Chr 11
Experiment 2 Loci realigned	26%	LocARNA realigned; Boundaries predicted; Multiperm; Low confidence results;
Genome wide alignment	71%	MultiZ alignments; Multiperm; Low confidence results; Alignments unfiltered ;
Genome wide Loci realigned	53%	LocARNA realigned; Boundaries predicted; Multiperm+flanking regions; Low c. results;
Washietl et al.	50%	ENCODE region (1% of human genome); High confidence Predictions; MultiZ alignment; filtered
Smith et al.	22%	High Confidence Results; Multiperm; EPO Alignments

Washietl et al. *Genome Res.* **2007**. 17: 852-864 Smith et al. *Nucleic Acids Res.* **2013**. 41(17): 8220-36.

Preliminary results » Annotated RNAs

Preliminary results » Annotated RNAs

Preliminary results » Phylogenetic information

Preliminary results » Comparing to Washietl et al.

Washietl et al. Genome Res. 2007. 17: 852-864

Preliminary results » Comparing to Washietl et al.

Washietl et al. Genome Res. 2007. 17: 852-864

Acknowledgements

Andrea Tanzer Ivo Hofacker Collegues at the TBI

