Modeling RNA-RNA interaction formation on direct paths

Maria Waldl

Department of Theoretical Chemistry, University of Vienna Währingerstrasse 17, 1090 Vienna, Austria maria@tbi.univie.ac.at

Bled, February 13th, 2023

kinetic models

- explore full structure space
- coarse graining
- computationaly costly

thermodynamic models

- established tools
- efficient
- no kinetics

kinetic models

- explore full structure space
- coarse graining
- computationaly costly

thermodynamic models

- established tools
- ► efficient
- no kinetics

 \Rightarrow thermodynamic structure candidate

Kinetically favorable path to forming this structure?

kinetic models

- explore full structure space
- coarse graining
- computationaly costly

thermodynamic models

- established tools
- ► efficient
- no kinetics

 \Rightarrow thermodynamic structure candidate Kinetically favorable path to forming this structure?

biological relevant vs. non-functional interactions

kinetic models

- explore full structure space
- coarse graining
- computationaly costly

thermodynamic models

- established tools
- ► efficient
- no kinetics

 \Rightarrow thermodynamic structure candidate Kinetically favorable path to forming this structure?

biological relevant vs. non-functional interactions kinetc features for improve interaction predictions

 \Rightarrow structures on direct paths

 \Rightarrow structures on direct paths

- fixed set of base pairs
- only consecutive substructures
- move set: base pair opening and closing

Free energy of interaction structures

Free energy of interaction structures

intramolecular folding

fast (instant) unpaired probability of interaction sites

slow (minimal) removal of conflict base pairs

3' sRNA

5' mRNA

- seed stability
- seed accessibility
- Iocal minima

. . .

barriers on paths

DP algorithm for minimal folding barriers

$$B_{s}(i,j) = \min \begin{cases} \max \begin{cases} E(i,j) & \text{if } i < s \\ B_{s}(i+1,j) & \\ \max \begin{cases} E(i,j) & \\ B_{s}(i,j-1) & \\ E(s,s) & \text{if } s = i = j \end{cases}$$

$$E(i,j) = E^{\text{hybrid}}(i,j) + E^{\text{unpaired}}(i,j)$$
$$E^{\text{hybrid}}(i,j) = \min \begin{cases} E^{\text{hybrid}}(i+1,j) + L(i,i+1) & \text{if } i < j \\ E_{\text{init}} & \text{if } i = j \end{cases}$$

$$\frac{P_i(t)}{dt} = \sum_{i \neq j} (P_j(t)k_{ji} - P_i(t)k_{ij})$$

- set of structures \Rightarrow states Ω
- move set M \Rightarrow neigborhood relation
- energy function E
- free energy difference ΔG^{\ddagger} \Rightarrow folding rate k_{ij}

$$k_{ij} = egin{cases} k_0 ext{ if } \Delta G^{\ddagger} \leq 0, \ k_0 e^{rac{-\Delta G^{\ddagger}}{RT}} ext{ otherwise} \end{cases}$$

$$rac{P_i(t)}{dt} = \sum_{i
eq j} (P_j(t)k_{ji} - P_i(t)k_{ij})$$

- set of structures \Rightarrow states Ω
- move set M \Rightarrow neigborhood relation
- energy function E
- free energy difference ΔG^{\ddagger} \Rightarrow folding rate k_{ij}

$$k_{ij} = egin{cases} k_0 ext{ if } \Delta G^{\ddagger} \leq 0, \ k_0 e^{rac{-\Delta G^{\ddagger}}{RT}} ext{ otherwise} \end{cases}$$

$$rac{P_i(t)}{dt} = \sum_{i
eq j} (P_j(t)k_{ji} - P_i(t)k_{ij})$$

- move set M \Rightarrow neigborhood relation
- energy function E
- free energy difference ΔG^{\ddagger} \Rightarrow folding rate k_{ij}

$$k_{ij} = egin{cases} k_0 ext{ if } \Delta G^{\ddagger} \leq 0, \ k_0 e^{rac{-\Delta G^{\ddagger}}{RT}} ext{ otherwise} \end{cases}$$

$$rac{P_i(t)}{dt} = \sum_{i
eq j} (P_j(t) k_{ji} - P_i(t) k_{ij})$$

- set of structures \Rightarrow states Ω
- move set M \Rightarrow neigborhood relation
- energy function E
- free energy difference ΔG^{\ddagger} \Rightarrow folding rate k_{ij}

$$k_{ij} = egin{cases} k_0 ext{ if } \Delta G^{\ddagger} \leq 0, \ k_0 e^{rac{-\Delta G^{\ddagger}}{RT}} ext{ otherwise} \end{cases}$$

Do kinetic feature provide new information?

(72 sRNA + mRNA pairs from E. coli)

Increased prediction performance with kinetics

E. coli data set:

- ▶ native sRNA + native mRNA (104 pairs)
- ▶ native sRNA + 4 × shuffled mRNA (420 pairs)
- \Rightarrow thermodynamic interaction prediction
- \Rightarrow compute kinetic features
- \Rightarrow train ML classifier

Increased prediction performance with kinetics

E. coli data set:

- ▶ native sRNA + native mRNA (104 pairs)
- ▶ native sRNA + 4 × shuffled mRNA (420 pairs)
- \Rightarrow thermodynamic interaction prediction
- \Rightarrow compute kinetic features
- \Rightarrow train ML classifier

linear discriminator, 10 fold validation

features	MCC	recall	precision
$E_{ m therm}$	0.53	0.50	0.76
$E_{\rm therm}$ + seed	0.60	0.52	0.86
$E_{\rm therm}$ + detailed dynamics	0.61	0.58	0.81
$E_{\rm therm}$ + seed + detailed dynamics	0.65	0.65	0.84
$E_{\rm therm}$ + seed + detailed dynamics + barrier	0.71	0.67	0.87

no overlap in sRNAs between test and training set

Summary

- computational model for interaction formation
- efficient computation methods for features
- benchmark prediction capabilities of features
- ► test **mechanistic** hypothesises
- \Rightarrow stable seed interaction
- \Rightarrow fast formation of full interaction

Outlook

easy to use prediction tool

In collaboration with ...

Vienna

- ► Ivo L. Hofacker
- ► Irene K. Beckmann
- ▶ and the TBI Team

Paris

Sebastian Will

Freiburg

- Rolf Backofen
- Martin Raden

Funding: FWF (I-2874-N28, DK RNA Biology, F 80 RNAdeco)

seed accessibility and folding barrier example

Cost for keeping the pairing positions of the interaction unpaired in the intramolecular structure

Dsra mechanism

Example energy landscape (E. coli: DsrA rpoS)

Free energy AG in kcal/mol for each interaction substructure from base pair i to base pair j

